CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis

Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-12, Vol.12 (12), p.e0188882-e0188882
Hauptverfasser: Ramonell, Kimberly M, Zhang, Wenxiao, Hadley, Annette, Chen, Ching-Wen, Fay, Katherine T, Lyons, John D, Klingensmith, Nathan J, McConnell, Kevin W, Coopersmith, Craig M, Ford, Mandy L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0188882