Protection of recombinant mammalian antibodies from development-dependent proteolysis in leaves of Nicotiana benthamiana

The expression of clinically useful proteins in plants has been bolstered by the development of high-yielding systems for transient protein expression using agroinfiltration. There is a need now to know more about how host plant development and metabolism influence the quantity and quality of recomb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-07, Vol.8 (7), p.e70203-e70203
Hauptverfasser: Robert, Stéphanie, Khalf, Moustafa, Goulet, Marie-Claire, D'Aoust, Marc-André, Sainsbury, Frank, Michaud, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The expression of clinically useful proteins in plants has been bolstered by the development of high-yielding systems for transient protein expression using agroinfiltration. There is a need now to know more about how host plant development and metabolism influence the quantity and quality of recombinant proteins. Endogenous proteolysis is a key determinant of the stability and yield of recombinant proteins in plants. Here we characterised cysteine (C1A) and aspartate (A1) protease profiles in leaves of the widely used expression host Nicotiana benthamiana, in relation with the production of a murine IgG, C5-1, targeted to the cell secretory pathway. Agroinfiltration significantly altered the distribution of C1A and A1 proteases along the leaf age gradient, with a correlation between leaf age and the level of proteolysis in whole-cell and apoplast protein extracts. The co-expression of tomato cystatin SlCYS8, an inhibitor of C1A proteases, alongside C5-1 increased antibody yield by nearly 40% after the usual 6-days incubation period, up to ~3 mg per plant. No positive effect of SlCYS8 was observed in oldest leaves, in line with an increased level of C1A protease activity and a very low expression rate of the inhibitor. By contrast, C5-1 yield was greater by an additional 40% following 8- to 10-days incubations in younger leaves, where high SlCYS8 expression was maintained. These findings confirm that the co-expression of recombinant protease inhibitors is a promising strategy for increasing recombinant protein yields in plants, but that further opportunity exists to improve this approach by addressing the influence of leaf age and proteases of other classes.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0070203