Visualization of endothelial actin cytoskeleton in the mouse retina
Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs), orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin) structures with suffi...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-10, Vol.7 (10), p.e47488-e47488 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs), orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin) structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs), enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0047488 |