Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells

X-chromosome inactivation (XCI) in female lymphocytes is uniquely regulated, as the inactive X (Xi) chromosome lacks localized Xist RNA and heterochromatin modifications. Epigenetic profiling reveals that Xist RNA is lost from the Xi at the pro-B cell stage and that additional heterochromatic modifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2017-10, Vol.13 (10), p.e1007050
Hauptverfasser: Syrett, Camille M, Sindhava, Vishal, Hodawadekar, Suchita, Myles, Arpita, Liang, Guanxiang, Zhang, Yue, Nandi, Satabdi, Cancro, Michael, Atchison, Michael, Anguera, Montserrat C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:X-chromosome inactivation (XCI) in female lymphocytes is uniquely regulated, as the inactive X (Xi) chromosome lacks localized Xist RNA and heterochromatin modifications. Epigenetic profiling reveals that Xist RNA is lost from the Xi at the pro-B cell stage and that additional heterochromatic modifications are gradually lost during B cell development. Activation of mature B cells restores Xist RNA and heterochromatin to the Xi in a dynamic two-step process that differs in timing and pattern, depending on the method of B cell stimulation. Finally, we find that DNA binding domain of YY1 is necessary for XCI in activated B cells, as ex-vivo YY1 deletion results in loss of Xi heterochromatin marks and up-regulation of X-linked genes. Ectopic expression of the YY1 zinc finger domain is sufficient to restore Xist RNA localization during B cell activation. Together, our results indicate that Xist RNA localization is critical for maintaining XCI in female lymphocytes, and that chromatin changes on the Xi during B cell development and the dynamic nature of YY1-dependent XCI maintenance in mature B cells predisposes X-linked immunity genes to reactivation.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1007050