Multiple Cayley-Klein metric learning
As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-09, Vol.12 (9), p.e0184865-e0184865 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0184865 |
---|---|
container_issue | 9 |
container_start_page | e0184865 |
container_title | PloS one |
container_volume | 12 |
creator | Bi, Yanhong Fan, Bin Wu, Fuchao |
description | As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric, which is defined as a linear combination of several Cayley-Klein metrics. Since Cayley-Klein is a kind of non-linear metric, its combination could model the data space better, thus lead to an improved performance. We show how to learn a multiple Cayley-Klein metric by iterative optimization over single Cayley-Klein metric and their combination coefficients under the objective to maximize the performance on separating inter-class instances and gathering intra-class instances. Our experiments on several benchmarks are quite encouraging. |
doi_str_mv | 10.1371/journal.pone.0184865 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1941325132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A505755397</galeid><doaj_id>oai_doaj_org_article_6bcd7f7c59284a3bafd2a527fc62269c</doaj_id><sourcerecordid>A505755397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d65aaf50f1118b85ad94fe115d530ee55671ab23eae5421f3110af9769cd49883</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3HX1H4guiKIXrfme5EZYih_FlQW_bsNpJmlT0klNZsT-e9Pt7NKRvZAQEk6e856c5K2qpxhNMa3x23XsUwthuo2tnSIsmRT8XnWKFSUTQRC9f7Q_qR7lvEaIUynEw-qESEUZYey0evmlD53fBns-g12wu8nnYH17vrFd8uY8WEitb5ePqwcOQrZPhvWs-vHh_ffZp8nl1cf57OJyYoQi3aQRHMBx5DDGciE5NIo5izFvOEXWci5qDAtCLVjOCHYUYwRO1UKZhikp6Vn1_KC7DTHrocOssWKYEl5mIeYHoomw1tvkN5B2OoLX14GYlhpS502wWixMU7vacEUkA7oA1xDgpHZGEFJKFq13Q7V-sbGNsW2XIIxExyetX-ll_K25QJJQVQReDwIp_upt7vTGZ2NDgNbG_vreRNRSKlbQF_-gd3c3UEsoDfjWxVLX7EX1BUe85pyqulDTO6gyGrvxptjB-RIfJbwZJRSms3-6JfQ56_m3r__PXv0cs6-O2JWF0K1yDH3nY5vHIDuAJsWck3W3j4yR3rv55jX03s16cHNJe3b8QbdJN_alfwGE3O0y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941325132</pqid></control><display><type>article</type><title>Multiple Cayley-Klein metric learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bi, Yanhong ; Fan, Bin ; Wu, Fuchao</creator><contributor>Hou, Chenping</contributor><creatorcontrib>Bi, Yanhong ; Fan, Bin ; Wu, Fuchao ; Hou, Chenping</creatorcontrib><description>As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric, which is defined as a linear combination of several Cayley-Klein metrics. Since Cayley-Klein is a kind of non-linear metric, its combination could model the data space better, thus lead to an improved performance. We show how to learn a multiple Cayley-Klein metric by iterative optimization over single Cayley-Klein metric and their combination coefficients under the objective to maximize the performance on separating inter-class instances and gathering intra-class instances. Our experiments on several benchmarks are quite encouraging.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0184865</identifier><identifier>PMID: 28934244</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Automation ; Benchmarks ; Biology and Life Sciences ; Classification ; Computer and Information Sciences ; Computer vision ; Datasets as Topic ; Euclidean geometry ; Face ; Geometry ; Humans ; Image Processing, Computer-Assisted - methods ; Internet ; Iterative methods ; Laboratories ; Linear Models ; Machine Learning ; Neighborhoods ; Neural networks ; Nonlinear Dynamics ; Optimization ; Pattern recognition ; Pattern Recognition, Automated - methods ; Physical Sciences ; Research and Analysis Methods ; Researchers ; Social Sciences ; Task complexity ; Teaching methods ; Technology application ; Time Factors</subject><ispartof>PloS one, 2017-09, Vol.12 (9), p.e0184865-e0184865</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Bi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Bi et al 2017 Bi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d65aaf50f1118b85ad94fe115d530ee55671ab23eae5421f3110af9769cd49883</citedby><cites>FETCH-LOGICAL-c692t-d65aaf50f1118b85ad94fe115d530ee55671ab23eae5421f3110af9769cd49883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608239/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608239/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28934244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hou, Chenping</contributor><creatorcontrib>Bi, Yanhong</creatorcontrib><creatorcontrib>Fan, Bin</creatorcontrib><creatorcontrib>Wu, Fuchao</creatorcontrib><title>Multiple Cayley-Klein metric learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric, which is defined as a linear combination of several Cayley-Klein metrics. Since Cayley-Klein is a kind of non-linear metric, its combination could model the data space better, thus lead to an improved performance. We show how to learn a multiple Cayley-Klein metric by iterative optimization over single Cayley-Klein metric and their combination coefficients under the objective to maximize the performance on separating inter-class instances and gathering intra-class instances. Our experiments on several benchmarks are quite encouraging.</description><subject>Automation</subject><subject>Benchmarks</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Computer vision</subject><subject>Datasets as Topic</subject><subject>Euclidean geometry</subject><subject>Face</subject><subject>Geometry</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Internet</subject><subject>Iterative methods</subject><subject>Laboratories</subject><subject>Linear Models</subject><subject>Machine Learning</subject><subject>Neighborhoods</subject><subject>Neural networks</subject><subject>Nonlinear Dynamics</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Social Sciences</subject><subject>Task complexity</subject><subject>Teaching methods</subject><subject>Technology application</subject><subject>Time Factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3HX1H4guiKIXrfme5EZYih_FlQW_bsNpJmlT0klNZsT-e9Pt7NKRvZAQEk6e856c5K2qpxhNMa3x23XsUwthuo2tnSIsmRT8XnWKFSUTQRC9f7Q_qR7lvEaIUynEw-qESEUZYey0evmlD53fBns-g12wu8nnYH17vrFd8uY8WEitb5ePqwcOQrZPhvWs-vHh_ffZp8nl1cf57OJyYoQi3aQRHMBx5DDGciE5NIo5izFvOEXWci5qDAtCLVjOCHYUYwRO1UKZhikp6Vn1_KC7DTHrocOssWKYEl5mIeYHoomw1tvkN5B2OoLX14GYlhpS502wWixMU7vacEUkA7oA1xDgpHZGEFJKFq13Q7V-sbGNsW2XIIxExyetX-ll_K25QJJQVQReDwIp_upt7vTGZ2NDgNbG_vreRNRSKlbQF_-gd3c3UEsoDfjWxVLX7EX1BUe85pyqulDTO6gyGrvxptjB-RIfJbwZJRSms3-6JfQ56_m3r__PXv0cs6-O2JWF0K1yDH3nY5vHIDuAJsWck3W3j4yR3rv55jX03s16cHNJe3b8QbdJN_alfwGE3O0y</recordid><startdate>20170921</startdate><enddate>20170921</enddate><creator>Bi, Yanhong</creator><creator>Fan, Bin</creator><creator>Wu, Fuchao</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170921</creationdate><title>Multiple Cayley-Klein metric learning</title><author>Bi, Yanhong ; Fan, Bin ; Wu, Fuchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d65aaf50f1118b85ad94fe115d530ee55671ab23eae5421f3110af9769cd49883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automation</topic><topic>Benchmarks</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Computer vision</topic><topic>Datasets as Topic</topic><topic>Euclidean geometry</topic><topic>Face</topic><topic>Geometry</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Internet</topic><topic>Iterative methods</topic><topic>Laboratories</topic><topic>Linear Models</topic><topic>Machine Learning</topic><topic>Neighborhoods</topic><topic>Neural networks</topic><topic>Nonlinear Dynamics</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Social Sciences</topic><topic>Task complexity</topic><topic>Teaching methods</topic><topic>Technology application</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Yanhong</creatorcontrib><creatorcontrib>Fan, Bin</creatorcontrib><creatorcontrib>Wu, Fuchao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Yanhong</au><au>Fan, Bin</au><au>Wu, Fuchao</au><au>Hou, Chenping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Cayley-Klein metric learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-09-21</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>e0184865</spage><epage>e0184865</epage><pages>e0184865-e0184865</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric, which is defined as a linear combination of several Cayley-Klein metrics. Since Cayley-Klein is a kind of non-linear metric, its combination could model the data space better, thus lead to an improved performance. We show how to learn a multiple Cayley-Klein metric by iterative optimization over single Cayley-Klein metric and their combination coefficients under the objective to maximize the performance on separating inter-class instances and gathering intra-class instances. Our experiments on several benchmarks are quite encouraging.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28934244</pmid><doi>10.1371/journal.pone.0184865</doi><tpages>e0184865</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-09, Vol.12 (9), p.e0184865-e0184865 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1941325132 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Automation Benchmarks Biology and Life Sciences Classification Computer and Information Sciences Computer vision Datasets as Topic Euclidean geometry Face Geometry Humans Image Processing, Computer-Assisted - methods Internet Iterative methods Laboratories Linear Models Machine Learning Neighborhoods Neural networks Nonlinear Dynamics Optimization Pattern recognition Pattern Recognition, Automated - methods Physical Sciences Research and Analysis Methods Researchers Social Sciences Task complexity Teaching methods Technology application Time Factors |
title | Multiple Cayley-Klein metric learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Cayley-Klein%20metric%20learning&rft.jtitle=PloS%20one&rft.au=Bi,%20Yanhong&rft.date=2017-09-21&rft.volume=12&rft.issue=9&rft.spage=e0184865&rft.epage=e0184865&rft.pages=e0184865-e0184865&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0184865&rft_dat=%3Cgale_plos_%3EA505755397%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1941325132&rft_id=info:pmid/28934244&rft_galeid=A505755397&rft_doaj_id=oai_doaj_org_article_6bcd7f7c59284a3bafd2a527fc62269c&rfr_iscdi=true |