Multiple Cayley-Klein metric learning

As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-09, Vol.12 (9), p.e0184865-e0184865
Hauptverfasser: Bi, Yanhong, Fan, Bin, Wu, Fuchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric, which is defined as a linear combination of several Cayley-Klein metrics. Since Cayley-Klein is a kind of non-linear metric, its combination could model the data space better, thus lead to an improved performance. We show how to learn a multiple Cayley-Klein metric by iterative optimization over single Cayley-Klein metric and their combination coefficients under the objective to maximize the performance on separating inter-class instances and gathering intra-class instances. Our experiments on several benchmarks are quite encouraging.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0184865