Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8

Salinity stress adversely affects the plant growth and is a major constraint to agriculture. In the present study, we studied the role of plant growth promoting rhizobacterium (PGPR) Enterobacter cloacae SBP-8 possessing ACC deaminase activity on proteome profile of wheat (Triticum aestivum L.) unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-09, Vol.12 (9), p.e0183513
Hauptverfasser: Singh, Rajnish Prakash, Runthala, Ashish, Khan, Shahid, Jha, Prabhat Nath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Salinity stress adversely affects the plant growth and is a major constraint to agriculture. In the present study, we studied the role of plant growth promoting rhizobacterium (PGPR) Enterobacter cloacae SBP-8 possessing ACC deaminase activity on proteome profile of wheat (Triticum aestivum L.) under high salinity (200 mM NaCl) stress. The aim of study was to investigate the differential expressed protein in selected three (T-1, T-2, T-3) treatments and absolute quantification (MS/MS analysis) was used to detect statistically significant expressed proteins. In this study, we investigated the adaptation mechanisms of wheat seedlings exposed to high concentration of NaCl treatment (200 mM) for 15 days in response to bacterial inoculation based on proteomic data. The identified proteins were distributed in different cellular, biological and molecular functions. Under salt stress, proteins related to ion-transport, metabolic pathway, protein synthesis and defense responsive were increased to a certain extent. A broader comparison of the proteome of wheat plant under different treatments revealed that changes in some of the metabolic pathway may be involved in stress adaption in response to PGPR inoculation. Hierarchical cluster analysis identified the various up-regulated/down-regulated proteins into tested three treatments. Our results suggest that bacterial inoculation enhanced the ability of wheat plant to combat salt stress via regulation of transcription factors, promoting antioxidative activity, induction of defense enzymes, lignin biosynthesis, and acceleration of protein synthesis.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0183513