Integrating Triangle and Jaccard similarities for recommendation
This paper proposes a new measure for recommendation through integrating Triangle and Jaccard similarities. The Triangle similarity considers both the length and the angle of rating vectors between them, while the Jaccard similarity considers non co-rating users. We compare the new similarity measur...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-08, Vol.12 (8), p.e0183570-e0183570 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a new measure for recommendation through integrating Triangle and Jaccard similarities. The Triangle similarity considers both the length and the angle of rating vectors between them, while the Jaccard similarity considers non co-rating users. We compare the new similarity measure with eight state-of-the-art ones on four popular datasets under the leave-one-out scenario. Results show that the new measure outperforms all the counterparts in terms of the mean absolute error and the root mean square error. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0183570 |