T-DNA-genome junctions form early after infection and are influenced by the chromatin state of the host genome

Agrobacterium tumefaciens mediated T-DNA integration is a common tool for plant genome manipulation. However, there is controversy regarding whether T-DNA integration is biased towards genes or randomly distributed throughout the genome. In order to address this question, we performed high-throughpu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2017-07, Vol.13 (7), p.e1006875-e1006875
Hauptverfasser: Shilo, Shay, Tripathi, Pooja, Melamed-Bessudo, Cathy, Tzfadia, Oren, Muth, Theodore R, Levy, Avraham A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Agrobacterium tumefaciens mediated T-DNA integration is a common tool for plant genome manipulation. However, there is controversy regarding whether T-DNA integration is biased towards genes or randomly distributed throughout the genome. In order to address this question, we performed high-throughput mapping of T-DNA-genome junctions obtained in the absence of selection at several time points after infection. T-DNA-genome junctions were detected as early as 6 hours post-infection. T-DNA distribution was apparently uniform throughout the chromosomes, yet local biases toward AT-rich motifs and T-DNA border sequence micro-homology were detected. Analysis of the epigenetic landscape of previously isolated sites of T-DNA integration in Kanamycin-selected transgenic plants showed an association with extremely low methylation and nucleosome occupancy. Conversely, non-selected junctions from this study showed no correlation with methylation and had chromatin marks, such as high nucleosome occupancy and high H3K27me3, that correspond to three-dimensional-interacting heterochromatin islands embedded within euchromatin. Such structures may play a role in capturing and silencing invading T-DNA.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1006875