Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers
What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires t...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2017-05, Vol.13 (5), p.e1005425-e1005425 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1005425 |
---|---|
container_issue | 5 |
container_start_page | e1005425 |
container_title | PLoS computational biology |
container_volume | 13 |
creator | Grüning, Björn A Rasche, Eric Rebolledo-Jaramillo, Boris Eberhard, Carl Houwaart, Torsten Chilton, John Coraor, Nate Backofen, Rolf Taylor, James Nekrutenko, Anton |
description | What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible. |
doi_str_mv | 10.1371/journal.pcbi.1005425 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1910463573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493733262</galeid><doaj_id>oai_doaj_org_article_b9ffb2544292468abd071231c8278d0e</doaj_id><sourcerecordid>A493733262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-2445f5747ae6147b1f0b2c8c51b1666eb3ab8111940420cc1524afb75a30a61f3</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEog_4BwgssSmLGfxOwgKpqkoZVIHEY21dO87UI088tRM08-9xmLTqoG6QF7bs75zrc3WL4hXBc8JK8n4VhtiBn2-MdnOCseBUPCmOiRBsVjJRPX1wPipOUlphnI-1fF4c0SrTpMLHhfoybHa9jQi6Bl2Bh-3uA7qE5Lolsl0fd0hDjM7GhFzXB2TCeuPtFjXQQ9aA3yWbUBsi0i6sbeMMeBRtshDNTVa9KJ614JN9Oe2nxa9Plz8vPs-uv10tLs6vZ0ZK0s8o56IVJS_BSsJLTVqsqamMIJpIKa1moCtCSM0xp9gYIiiHVpcCGAZJWnZavNn7bnxIaupNUqQmmEsmSpaJxZ5oAqzUJro1xJ0K4NTfixCXCmLvjLdK122rqeCc1pTLCnSDS0IZMRUtqwbb7PVxqjboHNqMnQJ_YHr40rkbtQy_VfbkOWA2OJsMYrgdbOrV2iVjvYfOhmH8N2ZE1qUc0bf_oI-nm6gl5ACua0Oua0ZTdc5rlgkqaabmj1B5NXbtTOhs6_L9geDdgSAzvd32SxhSUosf3_-D_XrI8j1rYkgp2va-dwSrcbzvQqpxvNU03ln2-mHf70V388z-AIq59KA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910463573</pqid></control><display><type>article</type><title>Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Grüning, Björn A ; Rasche, Eric ; Rebolledo-Jaramillo, Boris ; Eberhard, Carl ; Houwaart, Torsten ; Chilton, John ; Coraor, Nate ; Backofen, Rolf ; Taylor, James ; Nekrutenko, Anton</creator><contributor>Ouellette, Francis</contributor><creatorcontrib>Grüning, Björn A ; Rasche, Eric ; Rebolledo-Jaramillo, Boris ; Eberhard, Carl ; Houwaart, Torsten ; Chilton, John ; Coraor, Nate ; Backofen, Rolf ; Taylor, James ; Nekrutenko, Anton ; Ouellette, Francis</creatorcontrib><description>What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005425</identifier><identifier>PMID: 28542180</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Automation ; Biochemistry ; Bioinformatics ; Biology and Life Sciences ; Biomedical Research - methods ; Biomedical Research - organization & administration ; Collaboration ; Computational Biology ; Computer and Information Sciences ; Computer science ; Data analysis ; Data processing ; Deoxyribonucleic acid ; DNA ; Education ; Experiments ; Galaxies ; Genomes ; High-Throughput Nucleotide Sequencing ; Humans ; Life sciences ; Medical research ; Methods ; Mitochondrial DNA ; Molecular biology ; Physical Sciences ; Pipelines ; Quality control ; Reproducibility ; Research and Analysis Methods ; Research Personnel ; Researchers ; River networks ; Scripts ; Software ; Studies ; Systems analysis ; Technology application</subject><ispartof>PLoS computational biology, 2017-05, Vol.13 (5), p.e1005425-e1005425</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Grüning BA, Rasche E, Rebolledo-Jaramillo B, Eberhard C, Houwaart T, Chilton J, et al. (2017) Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers. PLoS Comput Biol 13(5): e1005425. https://doi.org/10.1371/journal.pcbi.1005425</rights><rights>2017 Grüning et al 2017 Grüning et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Grüning BA, Rasche E, Rebolledo-Jaramillo B, Eberhard C, Houwaart T, Chilton J, et al. (2017) Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers. PLoS Comput Biol 13(5): e1005425. https://doi.org/10.1371/journal.pcbi.1005425</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-2445f5747ae6147b1f0b2c8c51b1666eb3ab8111940420cc1524afb75a30a61f3</citedby><cites>FETCH-LOGICAL-c661t-2445f5747ae6147b1f0b2c8c51b1666eb3ab8111940420cc1524afb75a30a61f3</cites><orcidid>0000-0002-5987-8032 ; 0000-0001-9760-8992 ; 0000-0002-3079-6586 ; 0000-0001-5079-840X ; 0000-0002-6794-0756 ; 0000-0001-8059-3202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444614/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444614/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28542180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ouellette, Francis</contributor><creatorcontrib>Grüning, Björn A</creatorcontrib><creatorcontrib>Rasche, Eric</creatorcontrib><creatorcontrib>Rebolledo-Jaramillo, Boris</creatorcontrib><creatorcontrib>Eberhard, Carl</creatorcontrib><creatorcontrib>Houwaart, Torsten</creatorcontrib><creatorcontrib>Chilton, John</creatorcontrib><creatorcontrib>Coraor, Nate</creatorcontrib><creatorcontrib>Backofen, Rolf</creatorcontrib><creatorcontrib>Taylor, James</creatorcontrib><creatorcontrib>Nekrutenko, Anton</creatorcontrib><title>Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible.</description><subject>Automation</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biomedical Research - methods</subject><subject>Biomedical Research - organization & administration</subject><subject>Collaboration</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Education</subject><subject>Experiments</subject><subject>Galaxies</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Life sciences</subject><subject>Medical research</subject><subject>Methods</subject><subject>Mitochondrial DNA</subject><subject>Molecular biology</subject><subject>Physical Sciences</subject><subject>Pipelines</subject><subject>Quality control</subject><subject>Reproducibility</subject><subject>Research and Analysis Methods</subject><subject>Research Personnel</subject><subject>Researchers</subject><subject>River networks</subject><subject>Scripts</subject><subject>Software</subject><subject>Studies</subject><subject>Systems analysis</subject><subject>Technology application</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEog_4BwgssSmLGfxOwgKpqkoZVIHEY21dO87UI088tRM08-9xmLTqoG6QF7bs75zrc3WL4hXBc8JK8n4VhtiBn2-MdnOCseBUPCmOiRBsVjJRPX1wPipOUlphnI-1fF4c0SrTpMLHhfoybHa9jQi6Bl2Bh-3uA7qE5Lolsl0fd0hDjM7GhFzXB2TCeuPtFjXQQ9aA3yWbUBsi0i6sbeMMeBRtshDNTVa9KJ614JN9Oe2nxa9Plz8vPs-uv10tLs6vZ0ZK0s8o56IVJS_BSsJLTVqsqamMIJpIKa1moCtCSM0xp9gYIiiHVpcCGAZJWnZavNn7bnxIaupNUqQmmEsmSpaJxZ5oAqzUJro1xJ0K4NTfixCXCmLvjLdK122rqeCc1pTLCnSDS0IZMRUtqwbb7PVxqjboHNqMnQJ_YHr40rkbtQy_VfbkOWA2OJsMYrgdbOrV2iVjvYfOhmH8N2ZE1qUc0bf_oI-nm6gl5ACua0Oua0ZTdc5rlgkqaabmj1B5NXbtTOhs6_L9geDdgSAzvd32SxhSUosf3_-D_XrI8j1rYkgp2va-dwSrcbzvQqpxvNU03ln2-mHf70V388z-AIq59KA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Grüning, Björn A</creator><creator>Rasche, Eric</creator><creator>Rebolledo-Jaramillo, Boris</creator><creator>Eberhard, Carl</creator><creator>Houwaart, Torsten</creator><creator>Chilton, John</creator><creator>Coraor, Nate</creator><creator>Backofen, Rolf</creator><creator>Taylor, James</creator><creator>Nekrutenko, Anton</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5987-8032</orcidid><orcidid>https://orcid.org/0000-0001-9760-8992</orcidid><orcidid>https://orcid.org/0000-0002-3079-6586</orcidid><orcidid>https://orcid.org/0000-0001-5079-840X</orcidid><orcidid>https://orcid.org/0000-0002-6794-0756</orcidid><orcidid>https://orcid.org/0000-0001-8059-3202</orcidid></search><sort><creationdate>20170501</creationdate><title>Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers</title><author>Grüning, Björn A ; Rasche, Eric ; Rebolledo-Jaramillo, Boris ; Eberhard, Carl ; Houwaart, Torsten ; Chilton, John ; Coraor, Nate ; Backofen, Rolf ; Taylor, James ; Nekrutenko, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-2445f5747ae6147b1f0b2c8c51b1666eb3ab8111940420cc1524afb75a30a61f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automation</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biomedical Research - methods</topic><topic>Biomedical Research - organization & administration</topic><topic>Collaboration</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Education</topic><topic>Experiments</topic><topic>Galaxies</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Life sciences</topic><topic>Medical research</topic><topic>Methods</topic><topic>Mitochondrial DNA</topic><topic>Molecular biology</topic><topic>Physical Sciences</topic><topic>Pipelines</topic><topic>Quality control</topic><topic>Reproducibility</topic><topic>Research and Analysis Methods</topic><topic>Research Personnel</topic><topic>Researchers</topic><topic>River networks</topic><topic>Scripts</topic><topic>Software</topic><topic>Studies</topic><topic>Systems analysis</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grüning, Björn A</creatorcontrib><creatorcontrib>Rasche, Eric</creatorcontrib><creatorcontrib>Rebolledo-Jaramillo, Boris</creatorcontrib><creatorcontrib>Eberhard, Carl</creatorcontrib><creatorcontrib>Houwaart, Torsten</creatorcontrib><creatorcontrib>Chilton, John</creatorcontrib><creatorcontrib>Coraor, Nate</creatorcontrib><creatorcontrib>Backofen, Rolf</creatorcontrib><creatorcontrib>Taylor, James</creatorcontrib><creatorcontrib>Nekrutenko, Anton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grüning, Björn A</au><au>Rasche, Eric</au><au>Rebolledo-Jaramillo, Boris</au><au>Eberhard, Carl</au><au>Houwaart, Torsten</au><au>Chilton, John</au><au>Coraor, Nate</au><au>Backofen, Rolf</au><au>Taylor, James</au><au>Nekrutenko, Anton</au><au>Ouellette, Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>13</volume><issue>5</issue><spage>e1005425</spage><epage>e1005425</epage><pages>e1005425-e1005425</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28542180</pmid><doi>10.1371/journal.pcbi.1005425</doi><orcidid>https://orcid.org/0000-0002-5987-8032</orcidid><orcidid>https://orcid.org/0000-0001-9760-8992</orcidid><orcidid>https://orcid.org/0000-0002-3079-6586</orcidid><orcidid>https://orcid.org/0000-0001-5079-840X</orcidid><orcidid>https://orcid.org/0000-0002-6794-0756</orcidid><orcidid>https://orcid.org/0000-0001-8059-3202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2017-05, Vol.13 (5), p.e1005425-e1005425 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1910463573 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Automation Biochemistry Bioinformatics Biology and Life Sciences Biomedical Research - methods Biomedical Research - organization & administration Collaboration Computational Biology Computer and Information Sciences Computer science Data analysis Data processing Deoxyribonucleic acid DNA Education Experiments Galaxies Genomes High-Throughput Nucleotide Sequencing Humans Life sciences Medical research Methods Mitochondrial DNA Molecular biology Physical Sciences Pipelines Quality control Reproducibility Research and Analysis Methods Research Personnel Researchers River networks Scripts Software Studies Systems analysis Technology application |
title | Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jupyter%20and%20Galaxy:%20Easing%20entry%20barriers%20into%20complex%20data%20analyses%20for%20biomedical%20researchers&rft.jtitle=PLoS%20computational%20biology&rft.au=Gr%C3%BCning,%20Bj%C3%B6rn%20A&rft.date=2017-05-01&rft.volume=13&rft.issue=5&rft.spage=e1005425&rft.epage=e1005425&rft.pages=e1005425-e1005425&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005425&rft_dat=%3Cgale_plos_%3EA493733262%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910463573&rft_id=info:pmid/28542180&rft_galeid=A493733262&rft_doaj_id=oai_doaj_org_article_b9ffb2544292468abd071231c8278d0e&rfr_iscdi=true |