Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers

What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2017-05, Vol.13 (5), p.e1005425-e1005425
Hauptverfasser: Grüning, Björn A, Rasche, Eric, Rebolledo-Jaramillo, Boris, Eberhard, Carl, Houwaart, Torsten, Chilton, John, Coraor, Nate, Backofen, Rolf, Taylor, James, Nekrutenko, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005425
container_issue 5
container_start_page e1005425
container_title PLoS computational biology
container_volume 13
creator Grüning, Björn A
Rasche, Eric
Rebolledo-Jaramillo, Boris
Eberhard, Carl
Houwaart, Torsten
Chilton, John
Coraor, Nate
Backofen, Rolf
Taylor, James
Nekrutenko, Anton
description What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible.
doi_str_mv 10.1371/journal.pcbi.1005425
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1910463573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493733262</galeid><doaj_id>oai_doaj_org_article_b9ffb2544292468abd071231c8278d0e</doaj_id><sourcerecordid>A493733262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-2445f5747ae6147b1f0b2c8c51b1666eb3ab8111940420cc1524afb75a30a61f3</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEog_4BwgssSmLGfxOwgKpqkoZVIHEY21dO87UI088tRM08-9xmLTqoG6QF7bs75zrc3WL4hXBc8JK8n4VhtiBn2-MdnOCseBUPCmOiRBsVjJRPX1wPipOUlphnI-1fF4c0SrTpMLHhfoybHa9jQi6Bl2Bh-3uA7qE5Lolsl0fd0hDjM7GhFzXB2TCeuPtFjXQQ9aA3yWbUBsi0i6sbeMMeBRtshDNTVa9KJ614JN9Oe2nxa9Plz8vPs-uv10tLs6vZ0ZK0s8o56IVJS_BSsJLTVqsqamMIJpIKa1moCtCSM0xp9gYIiiHVpcCGAZJWnZavNn7bnxIaupNUqQmmEsmSpaJxZ5oAqzUJro1xJ0K4NTfixCXCmLvjLdK122rqeCc1pTLCnSDS0IZMRUtqwbb7PVxqjboHNqMnQJ_YHr40rkbtQy_VfbkOWA2OJsMYrgdbOrV2iVjvYfOhmH8N2ZE1qUc0bf_oI-nm6gl5ACua0Oua0ZTdc5rlgkqaabmj1B5NXbtTOhs6_L9geDdgSAzvd32SxhSUosf3_-D_XrI8j1rYkgp2va-dwSrcbzvQqpxvNU03ln2-mHf70V388z-AIq59KA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910463573</pqid></control><display><type>article</type><title>Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Grüning, Björn A ; Rasche, Eric ; Rebolledo-Jaramillo, Boris ; Eberhard, Carl ; Houwaart, Torsten ; Chilton, John ; Coraor, Nate ; Backofen, Rolf ; Taylor, James ; Nekrutenko, Anton</creator><contributor>Ouellette, Francis</contributor><creatorcontrib>Grüning, Björn A ; Rasche, Eric ; Rebolledo-Jaramillo, Boris ; Eberhard, Carl ; Houwaart, Torsten ; Chilton, John ; Coraor, Nate ; Backofen, Rolf ; Taylor, James ; Nekrutenko, Anton ; Ouellette, Francis</creatorcontrib><description>What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005425</identifier><identifier>PMID: 28542180</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Automation ; Biochemistry ; Bioinformatics ; Biology and Life Sciences ; Biomedical Research - methods ; Biomedical Research - organization &amp; administration ; Collaboration ; Computational Biology ; Computer and Information Sciences ; Computer science ; Data analysis ; Data processing ; Deoxyribonucleic acid ; DNA ; Education ; Experiments ; Galaxies ; Genomes ; High-Throughput Nucleotide Sequencing ; Humans ; Life sciences ; Medical research ; Methods ; Mitochondrial DNA ; Molecular biology ; Physical Sciences ; Pipelines ; Quality control ; Reproducibility ; Research and Analysis Methods ; Research Personnel ; Researchers ; River networks ; Scripts ; Software ; Studies ; Systems analysis ; Technology application</subject><ispartof>PLoS computational biology, 2017-05, Vol.13 (5), p.e1005425-e1005425</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Grüning BA, Rasche E, Rebolledo-Jaramillo B, Eberhard C, Houwaart T, Chilton J, et al. (2017) Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers. PLoS Comput Biol 13(5): e1005425. https://doi.org/10.1371/journal.pcbi.1005425</rights><rights>2017 Grüning et al 2017 Grüning et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Grüning BA, Rasche E, Rebolledo-Jaramillo B, Eberhard C, Houwaart T, Chilton J, et al. (2017) Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers. PLoS Comput Biol 13(5): e1005425. https://doi.org/10.1371/journal.pcbi.1005425</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-2445f5747ae6147b1f0b2c8c51b1666eb3ab8111940420cc1524afb75a30a61f3</citedby><cites>FETCH-LOGICAL-c661t-2445f5747ae6147b1f0b2c8c51b1666eb3ab8111940420cc1524afb75a30a61f3</cites><orcidid>0000-0002-5987-8032 ; 0000-0001-9760-8992 ; 0000-0002-3079-6586 ; 0000-0001-5079-840X ; 0000-0002-6794-0756 ; 0000-0001-8059-3202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444614/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444614/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28542180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ouellette, Francis</contributor><creatorcontrib>Grüning, Björn A</creatorcontrib><creatorcontrib>Rasche, Eric</creatorcontrib><creatorcontrib>Rebolledo-Jaramillo, Boris</creatorcontrib><creatorcontrib>Eberhard, Carl</creatorcontrib><creatorcontrib>Houwaart, Torsten</creatorcontrib><creatorcontrib>Chilton, John</creatorcontrib><creatorcontrib>Coraor, Nate</creatorcontrib><creatorcontrib>Backofen, Rolf</creatorcontrib><creatorcontrib>Taylor, James</creatorcontrib><creatorcontrib>Nekrutenko, Anton</creatorcontrib><title>Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible.</description><subject>Automation</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biomedical Research - methods</subject><subject>Biomedical Research - organization &amp; administration</subject><subject>Collaboration</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Education</subject><subject>Experiments</subject><subject>Galaxies</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Life sciences</subject><subject>Medical research</subject><subject>Methods</subject><subject>Mitochondrial DNA</subject><subject>Molecular biology</subject><subject>Physical Sciences</subject><subject>Pipelines</subject><subject>Quality control</subject><subject>Reproducibility</subject><subject>Research and Analysis Methods</subject><subject>Research Personnel</subject><subject>Researchers</subject><subject>River networks</subject><subject>Scripts</subject><subject>Software</subject><subject>Studies</subject><subject>Systems analysis</subject><subject>Technology application</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEog_4BwgssSmLGfxOwgKpqkoZVIHEY21dO87UI088tRM08-9xmLTqoG6QF7bs75zrc3WL4hXBc8JK8n4VhtiBn2-MdnOCseBUPCmOiRBsVjJRPX1wPipOUlphnI-1fF4c0SrTpMLHhfoybHa9jQi6Bl2Bh-3uA7qE5Lolsl0fd0hDjM7GhFzXB2TCeuPtFjXQQ9aA3yWbUBsi0i6sbeMMeBRtshDNTVa9KJ614JN9Oe2nxa9Plz8vPs-uv10tLs6vZ0ZK0s8o56IVJS_BSsJLTVqsqamMIJpIKa1moCtCSM0xp9gYIiiHVpcCGAZJWnZavNn7bnxIaupNUqQmmEsmSpaJxZ5oAqzUJro1xJ0K4NTfixCXCmLvjLdK122rqeCc1pTLCnSDS0IZMRUtqwbb7PVxqjboHNqMnQJ_YHr40rkbtQy_VfbkOWA2OJsMYrgdbOrV2iVjvYfOhmH8N2ZE1qUc0bf_oI-nm6gl5ACua0Oua0ZTdc5rlgkqaabmj1B5NXbtTOhs6_L9geDdgSAzvd32SxhSUosf3_-D_XrI8j1rYkgp2va-dwSrcbzvQqpxvNU03ln2-mHf70V388z-AIq59KA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Grüning, Björn A</creator><creator>Rasche, Eric</creator><creator>Rebolledo-Jaramillo, Boris</creator><creator>Eberhard, Carl</creator><creator>Houwaart, Torsten</creator><creator>Chilton, John</creator><creator>Coraor, Nate</creator><creator>Backofen, Rolf</creator><creator>Taylor, James</creator><creator>Nekrutenko, Anton</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5987-8032</orcidid><orcidid>https://orcid.org/0000-0001-9760-8992</orcidid><orcidid>https://orcid.org/0000-0002-3079-6586</orcidid><orcidid>https://orcid.org/0000-0001-5079-840X</orcidid><orcidid>https://orcid.org/0000-0002-6794-0756</orcidid><orcidid>https://orcid.org/0000-0001-8059-3202</orcidid></search><sort><creationdate>20170501</creationdate><title>Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers</title><author>Grüning, Björn A ; Rasche, Eric ; Rebolledo-Jaramillo, Boris ; Eberhard, Carl ; Houwaart, Torsten ; Chilton, John ; Coraor, Nate ; Backofen, Rolf ; Taylor, James ; Nekrutenko, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-2445f5747ae6147b1f0b2c8c51b1666eb3ab8111940420cc1524afb75a30a61f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automation</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biomedical Research - methods</topic><topic>Biomedical Research - organization &amp; administration</topic><topic>Collaboration</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Education</topic><topic>Experiments</topic><topic>Galaxies</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Life sciences</topic><topic>Medical research</topic><topic>Methods</topic><topic>Mitochondrial DNA</topic><topic>Molecular biology</topic><topic>Physical Sciences</topic><topic>Pipelines</topic><topic>Quality control</topic><topic>Reproducibility</topic><topic>Research and Analysis Methods</topic><topic>Research Personnel</topic><topic>Researchers</topic><topic>River networks</topic><topic>Scripts</topic><topic>Software</topic><topic>Studies</topic><topic>Systems analysis</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grüning, Björn A</creatorcontrib><creatorcontrib>Rasche, Eric</creatorcontrib><creatorcontrib>Rebolledo-Jaramillo, Boris</creatorcontrib><creatorcontrib>Eberhard, Carl</creatorcontrib><creatorcontrib>Houwaart, Torsten</creatorcontrib><creatorcontrib>Chilton, John</creatorcontrib><creatorcontrib>Coraor, Nate</creatorcontrib><creatorcontrib>Backofen, Rolf</creatorcontrib><creatorcontrib>Taylor, James</creatorcontrib><creatorcontrib>Nekrutenko, Anton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grüning, Björn A</au><au>Rasche, Eric</au><au>Rebolledo-Jaramillo, Boris</au><au>Eberhard, Carl</au><au>Houwaart, Torsten</au><au>Chilton, John</au><au>Coraor, Nate</au><au>Backofen, Rolf</au><au>Taylor, James</au><au>Nekrutenko, Anton</au><au>Ouellette, Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>13</volume><issue>5</issue><spage>e1005425</spage><epage>e1005425</epage><pages>e1005425-e1005425</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28542180</pmid><doi>10.1371/journal.pcbi.1005425</doi><orcidid>https://orcid.org/0000-0002-5987-8032</orcidid><orcidid>https://orcid.org/0000-0001-9760-8992</orcidid><orcidid>https://orcid.org/0000-0002-3079-6586</orcidid><orcidid>https://orcid.org/0000-0001-5079-840X</orcidid><orcidid>https://orcid.org/0000-0002-6794-0756</orcidid><orcidid>https://orcid.org/0000-0001-8059-3202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2017-05, Vol.13 (5), p.e1005425-e1005425
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1910463573
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Automation
Biochemistry
Bioinformatics
Biology and Life Sciences
Biomedical Research - methods
Biomedical Research - organization & administration
Collaboration
Computational Biology
Computer and Information Sciences
Computer science
Data analysis
Data processing
Deoxyribonucleic acid
DNA
Education
Experiments
Galaxies
Genomes
High-Throughput Nucleotide Sequencing
Humans
Life sciences
Medical research
Methods
Mitochondrial DNA
Molecular biology
Physical Sciences
Pipelines
Quality control
Reproducibility
Research and Analysis Methods
Research Personnel
Researchers
River networks
Scripts
Software
Studies
Systems analysis
Technology application
title Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jupyter%20and%20Galaxy:%20Easing%20entry%20barriers%20into%20complex%20data%20analyses%20for%20biomedical%20researchers&rft.jtitle=PLoS%20computational%20biology&rft.au=Gr%C3%BCning,%20Bj%C3%B6rn%20A&rft.date=2017-05-01&rft.volume=13&rft.issue=5&rft.spage=e1005425&rft.epage=e1005425&rft.pages=e1005425-e1005425&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005425&rft_dat=%3Cgale_plos_%3EA493733262%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910463573&rft_id=info:pmid/28542180&rft_galeid=A493733262&rft_doaj_id=oai_doaj_org_article_b9ffb2544292468abd071231c8278d0e&rfr_iscdi=true