Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers

What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2017-05, Vol.13 (5), p.e1005425-e1005425
Hauptverfasser: Grüning, Björn A, Rasche, Eric, Rebolledo-Jaramillo, Boris, Eberhard, Carl, Houwaart, Torsten, Chilton, John, Coraor, Nate, Backofen, Rolf, Taylor, James, Nekrutenko, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads) to a form suitable for further analyses (i.e., the list of variable sites). The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1005425