Transcriptional activation of HIF-1 by a ROS-ERK axis underlies the resistance to photodynamic therapy

Photodynamic therapy (PDT), a promising treatment option for cancer, involves the activation of a photosensitizer (PS) by local irradiation with visible light. Excitation of the PS leads to a series of photochemical reactions and consequently the local generation of harmful reactive oxygen species (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-05, Vol.12 (5), p.e0177801-e0177801
Hauptverfasser: Lamberti, María Julia, Pansa, María Florencia, Vera, Renzo Emanuel, Fernández-Zapico, Martín Ernesto, Rumie Vittar, Natalia Belén, Rivarola, Viviana Alicia
Format: Artikel
Sprache:eng
Schlagworte:
Jaw
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photodynamic therapy (PDT), a promising treatment option for cancer, involves the activation of a photosensitizer (PS) by local irradiation with visible light. Excitation of the PS leads to a series of photochemical reactions and consequently the local generation of harmful reactive oxygen species (ROS) causing limited or none systemic defects. However, the development of resistance to this promising therapy has slowed down its translation into the clinical practice. Thus, there is an increase need in understanding of the molecular mechanism underlying resistance to PDT. Here, we aimed to examine whether a relationship exists between PDT outcome and ROS-involvement in the resistance mechanism in photosensitized cancer cells. In order to recapitulate tumor architecture of the respective original tumor, we developed a multicellular three-dimensional spheroid system comprising a normoxic periphery, surrounding a hypoxic core. Using Me-ALA, a prodrug of the PS PpIX, in human colorectal spheroids we demonstrate that HIF-1 transcriptional activity was strongly up-regulated and mediates PDT resistant phenotype. RNAi knockdown of HIF-1 impairs resistance to PDT. Oxidative stress-mediated activation of ERK1/2 followed PDT was involved on positive modulation of HIF-1 transcriptional activity after photodynamic treatment. ROS scavenging and MEK/ERK pathway inhibition abrogated the PDT-mediated HIF-1 upregulation. Together our data demonstrate that resistance to PDT is in part mediated by the activation of a ROS-ERK1/2-HIF-1 axis, thus, identifying novel therapeutic targets that could be used in combination with PDT.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0177801