Action of tyrosinase on alpha and beta-arbutin: A kinetic study

The known derivatives from hydroquinone, α and β-arbutin, are used as depigmenting agents. In this work, we demonstrate that the oxy form of tyrosinase (oxytyrosinase) hydroxylates α and β-arbutin in ortho position of the phenolic hydroxyl group, giving rise to a complex formed by met-tyrosinase wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-05, Vol.12 (5), p.e0177330-e0177330
Hauptverfasser: Garcia-Jimenez, Antonio, Teruel-Puche, Jose Antonio, Berna, Jose, Rodriguez-Lopez, José Neptuno, Tudela, Jose, Garcia-Canovas, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The known derivatives from hydroquinone, α and β-arbutin, are used as depigmenting agents. In this work, we demonstrate that the oxy form of tyrosinase (oxytyrosinase) hydroxylates α and β-arbutin in ortho position of the phenolic hydroxyl group, giving rise to a complex formed by met-tyrosinase with the hydroxylated α or β-arbutin. This complex could evolve in two ways: by oxidizing the originated o-diphenol to o-quinone and deoxy-tyrosinase, or by delivering the o-diphenol and met-tyrosinase to the medium, which would produce the self-activation of the system. Note that the quinones generated in both cases are unstable, so the catalysis cannot be studied quantitatively. However, if 3-methyl-2-benzothiazolinone hydrazone hydrochloride hydrate is used, the o-quinone is attacked, so that it becomes an adduct, which can be oxidized by another molecule of o-quinone, generating o-diphenol in the medium. In this way, the system reaches the steady state and originates a chromophore, which, in turn, has a high absorptivity in the visible spectrum. This reaction allowed us to characterize α and β-arbutin kinetically as substrates of tyrosinase for the first time, obtaining a Michaelis constant values of 6.5 ± 0.58 mM and 3 ± 0.19 mM, respectively. The data agree with those from docking studies that showed that the enzyme has a higher affinity for β-arbutin. Moreover, the catalytic constants obtained by the kinetic studies (catalytic constant = 4.43 ± 0.33 s-1 and 3.7 ± 0.29 s-1 for α and β-arbutin respectively) agree with our forecast based on 13 C NMR considerations. This kinetic characterization of α and β-arbutin as substrates of tyrosinase should be taken into account to explain possible adverse effects of these compounds.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0177330