Chromosomal localization of genes conferring desirable agronomic traits from Agropyron cristatum chromosome 1P
Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP), a wild relative of common wheat, possesses many potentially valuable genes for wheat breeding. To transfer these genes into wheat, a series of wheat-A. cristatum derivatives have been obtained in our laboratory. In this study, a wheat-A. cristat...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-04, Vol.12 (4), p.e0175265-e0175265 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP), a wild relative of common wheat, possesses many potentially valuable genes for wheat breeding. To transfer these genes into wheat, a series of wheat-A. cristatum derivatives have been obtained in our laboratory. In this study, a wheat-A. cristatum derivative II-3-1 was obtained, which was proven to contain a 1P (1A) disomic substitution and 2P disomic addition line with 40 wheat chromosomes and two pairs of A. cristatum chromosomes by genomic in situ hybridization (GISH) and molecular markers analysis. By further backcrossing with the wheat parent Fukuhokomugi (Fukuho) and self-fertilization, three different lines were separated from II-3-1, including wheat-A. cristatum 1P disomic addition line II-3-1a, 2P disomic addition line II-3-1b and 1P (1A) disomic substitution line II-3-1c. Because 2P addition line had been reported before, we aimed to investigate 1P disomic addition line II-3-1a and wheat-A. cristatum 1P (1A) disomic substitution line II-3-1c. Analysis of different genetic populations demonstrated that 1P chromosome harbored multiple agronomic traits, such as elevated spike length, increased tillering ability, reduced plant height and spikelet density. Besides, bristles on the glume ridges as an important morphological marker was located on 1P chromosome. Therefore, the novel 1P addition and substitution lines will be used as important genetic materials to widen the genetic resources of wheat. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0175265 |