A neural mass model of cross frequency coupling

Electrophysiological signals of cortical activity show a range of possible frequency and amplitude modulations, both within and across regions, collectively known as cross-frequency coupling. To investigate whether these modulations could be considered as manifestations of the same underlying mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-04, Vol.12 (4), p.e0173776-e0173776
Hauptverfasser: Chehelcheraghi, Mojtaba, van Leeuwen, Cees, Steur, Erik, Nakatani, Chie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0173776
container_issue 4
container_start_page e0173776
container_title PloS one
container_volume 12
creator Chehelcheraghi, Mojtaba
van Leeuwen, Cees
Steur, Erik
Nakatani, Chie
description Electrophysiological signals of cortical activity show a range of possible frequency and amplitude modulations, both within and across regions, collectively known as cross-frequency coupling. To investigate whether these modulations could be considered as manifestations of the same underlying mechanism, we developed a neural mass model. The model provides five out of the theoretically proposed six different coupling types. Within model components, slow and fast activity engage in phase-frequency coupling in conditions of low ambient noise level and with high noise level engage in phase-amplitude coupling. Between model components, these couplings can be coordinated via slow activity, giving rise to more complex modulations. The model, thus, provides a coherent account of cross-frequency coupling, both within and between components, with which regional and cross-regional frequency and amplitude modulations could be addressed.
doi_str_mv 10.1371/journal.pone.0173776
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1884461150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A488661520</galeid><doaj_id>oai_doaj_org_article_7c6729b35f6d423b9f84371189faba61</doaj_id><sourcerecordid>A488661520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-fc7795d5be94c77b0268e6fb658f3a48ac29e8acbdb94bc7ec05c6ba94d434953</originalsourceid><addsrcrecordid>eNqNkluL1DAYhoso7jr6D0QLgujFzCZNmsONMCweBhYWPN2GJE1mOqTJmLTi_nvTne4ylb2QQpqkz_cm39u3KF5CsIKIwot9GKKXbnUI3qwApIhS8qg4hxxVS1IB9PhkflY8S2kPQI0YIU-Ls4ohBgDB58XFuvRmiNKVnUyp7EJjXBlsqWPISxvNr8F4fVPqMBxc67fPiydWumReTO9F8ePTx--XX5ZX1583l-urpSa86pdWU8rrplaG4zxVoCLMEKtIzSySmEldcZNH1SiOlaZGg1oTJTluMMK8Rovi9VH34EISU69JQMYwJhDWIBObI9EEuReH2HYy3oggW3G7EeJWyNi32hlBNaEVV6i2pMEVUtwynC2EjFupJIFZ68N02qA602jj-2zJTHT-xbc7sQ2_RTYU0iy2KN5NAjFkx1IvujZp45z0JgzHezNGACIZffMP-nB3E7WVuYHW25DP1aOoWI9KBNbVSK0eoPLTmK7VORi2zfuzgvezgsz05k-_lUNKYvPt6_-z1z_n7NsTdmek63cpuKFvg09zEB_B24BFY-9NhkCMub5zQ4y5FlOuc9mr0x90X3QXZPQXNAPxDw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884461150</pqid></control><display><type>article</type><title>A neural mass model of cross frequency coupling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chehelcheraghi, Mojtaba ; van Leeuwen, Cees ; Steur, Erik ; Nakatani, Chie</creator><contributor>Cymbalyuk, Gennady</contributor><creatorcontrib>Chehelcheraghi, Mojtaba ; van Leeuwen, Cees ; Steur, Erik ; Nakatani, Chie ; Cymbalyuk, Gennady</creatorcontrib><description>Electrophysiological signals of cortical activity show a range of possible frequency and amplitude modulations, both within and across regions, collectively known as cross-frequency coupling. To investigate whether these modulations could be considered as manifestations of the same underlying mechanism, we developed a neural mass model. The model provides five out of the theoretically proposed six different coupling types. Within model components, slow and fast activity engage in phase-frequency coupling in conditions of low ambient noise level and with high noise level engage in phase-amplitude coupling. Between model components, these couplings can be coordinated via slow activity, giving rise to more complex modulations. The model, thus, provides a coherent account of cross-frequency coupling, both within and between components, with which regional and cross-regional frequency and amplitude modulations could be addressed.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0173776</identifier><identifier>PMID: 28380064</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Assemblies ; Attention ; Bifurcations ; Biology and Life Sciences ; Brain ; Brain - physiology ; Brain research ; Chlorofluorocarbons ; Chokes (Electricity) ; Coding ; Cognition ; Cognition &amp; reasoning ; Cognitive ability ; Computer simulation ; Control theory ; Cortex (auditory) ; Cortex (temporal) ; Coupling (molecular) ; Couplings ; Deep brain stimulation ; EEG ; Electroencephalography - methods ; Electrophysiology ; Engineering ; Epilepsy ; Event-related potentials ; Excitability ; Feedback ; Frequency dependence ; Hippocampus ; Humans ; Information processing ; Information transfer ; Interneurons ; Ketamine ; Luteinizing hormone ; Mathematical models ; Mechanical engineering ; Medicine and Health Sciences ; Methods ; Models, Biological ; Modulation ; Neural circuitry ; Neural networks ; Neuroimaging ; Neuromodulation ; Neurons ; Neurons - physiology ; Noise ; Noise levels ; Oscillations ; Phase shift ; Physical Sciences ; Population ; Populations ; Propagation ; Relay ; Research and Analysis Methods ; Rhythm ; Simulation ; Sleep ; Stimulation ; Temporal lobe ; Utilities ; Visual cortex ; Visual perception</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0173776-e0173776</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Chehelcheraghi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Chehelcheraghi et al 2017 Chehelcheraghi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-fc7795d5be94c77b0268e6fb658f3a48ac29e8acbdb94bc7ec05c6ba94d434953</citedby><cites>FETCH-LOGICAL-c692t-fc7795d5be94c77b0268e6fb658f3a48ac29e8acbdb94bc7ec05c6ba94d434953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381784/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381784/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28380064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cymbalyuk, Gennady</contributor><creatorcontrib>Chehelcheraghi, Mojtaba</creatorcontrib><creatorcontrib>van Leeuwen, Cees</creatorcontrib><creatorcontrib>Steur, Erik</creatorcontrib><creatorcontrib>Nakatani, Chie</creatorcontrib><title>A neural mass model of cross frequency coupling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Electrophysiological signals of cortical activity show a range of possible frequency and amplitude modulations, both within and across regions, collectively known as cross-frequency coupling. To investigate whether these modulations could be considered as manifestations of the same underlying mechanism, we developed a neural mass model. The model provides five out of the theoretically proposed six different coupling types. Within model components, slow and fast activity engage in phase-frequency coupling in conditions of low ambient noise level and with high noise level engage in phase-amplitude coupling. Between model components, these couplings can be coordinated via slow activity, giving rise to more complex modulations. The model, thus, provides a coherent account of cross-frequency coupling, both within and between components, with which regional and cross-regional frequency and amplitude modulations could be addressed.</description><subject>Assemblies</subject><subject>Attention</subject><subject>Bifurcations</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain research</subject><subject>Chlorofluorocarbons</subject><subject>Chokes (Electricity)</subject><subject>Coding</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive ability</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Cortex (auditory)</subject><subject>Cortex (temporal)</subject><subject>Coupling (molecular)</subject><subject>Couplings</subject><subject>Deep brain stimulation</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Electrophysiology</subject><subject>Engineering</subject><subject>Epilepsy</subject><subject>Event-related potentials</subject><subject>Excitability</subject><subject>Feedback</subject><subject>Frequency dependence</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Information processing</subject><subject>Information transfer</subject><subject>Interneurons</subject><subject>Ketamine</subject><subject>Luteinizing hormone</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Modulation</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neuromodulation</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Oscillations</subject><subject>Phase shift</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Populations</subject><subject>Propagation</subject><subject>Relay</subject><subject>Research and Analysis Methods</subject><subject>Rhythm</subject><subject>Simulation</subject><subject>Sleep</subject><subject>Stimulation</subject><subject>Temporal lobe</subject><subject>Utilities</subject><subject>Visual cortex</subject><subject>Visual perception</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAYhoso7jr6D0QLgujFzCZNmsONMCweBhYWPN2GJE1mOqTJmLTi_nvTne4ylb2QQpqkz_cm39u3KF5CsIKIwot9GKKXbnUI3qwApIhS8qg4hxxVS1IB9PhkflY8S2kPQI0YIU-Ls4ohBgDB58XFuvRmiNKVnUyp7EJjXBlsqWPISxvNr8F4fVPqMBxc67fPiydWumReTO9F8ePTx--XX5ZX1583l-urpSa86pdWU8rrplaG4zxVoCLMEKtIzSySmEldcZNH1SiOlaZGg1oTJTluMMK8Rovi9VH34EISU69JQMYwJhDWIBObI9EEuReH2HYy3oggW3G7EeJWyNi32hlBNaEVV6i2pMEVUtwynC2EjFupJIFZ68N02qA602jj-2zJTHT-xbc7sQ2_RTYU0iy2KN5NAjFkx1IvujZp45z0JgzHezNGACIZffMP-nB3E7WVuYHW25DP1aOoWI9KBNbVSK0eoPLTmK7VORi2zfuzgvezgsz05k-_lUNKYvPt6_-z1z_n7NsTdmek63cpuKFvg09zEB_B24BFY-9NhkCMub5zQ4y5FlOuc9mr0x90X3QXZPQXNAPxDw</recordid><startdate>20170405</startdate><enddate>20170405</enddate><creator>Chehelcheraghi, Mojtaba</creator><creator>van Leeuwen, Cees</creator><creator>Steur, Erik</creator><creator>Nakatani, Chie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170405</creationdate><title>A neural mass model of cross frequency coupling</title><author>Chehelcheraghi, Mojtaba ; van Leeuwen, Cees ; Steur, Erik ; Nakatani, Chie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-fc7795d5be94c77b0268e6fb658f3a48ac29e8acbdb94bc7ec05c6ba94d434953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Assemblies</topic><topic>Attention</topic><topic>Bifurcations</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain research</topic><topic>Chlorofluorocarbons</topic><topic>Chokes (Electricity)</topic><topic>Coding</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive ability</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Cortex (auditory)</topic><topic>Cortex (temporal)</topic><topic>Coupling (molecular)</topic><topic>Couplings</topic><topic>Deep brain stimulation</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Electrophysiology</topic><topic>Engineering</topic><topic>Epilepsy</topic><topic>Event-related potentials</topic><topic>Excitability</topic><topic>Feedback</topic><topic>Frequency dependence</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Information processing</topic><topic>Information transfer</topic><topic>Interneurons</topic><topic>Ketamine</topic><topic>Luteinizing hormone</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Modulation</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neuromodulation</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Oscillations</topic><topic>Phase shift</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Populations</topic><topic>Propagation</topic><topic>Relay</topic><topic>Research and Analysis Methods</topic><topic>Rhythm</topic><topic>Simulation</topic><topic>Sleep</topic><topic>Stimulation</topic><topic>Temporal lobe</topic><topic>Utilities</topic><topic>Visual cortex</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chehelcheraghi, Mojtaba</creatorcontrib><creatorcontrib>van Leeuwen, Cees</creatorcontrib><creatorcontrib>Steur, Erik</creatorcontrib><creatorcontrib>Nakatani, Chie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chehelcheraghi, Mojtaba</au><au>van Leeuwen, Cees</au><au>Steur, Erik</au><au>Nakatani, Chie</au><au>Cymbalyuk, Gennady</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural mass model of cross frequency coupling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-05</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0173776</spage><epage>e0173776</epage><pages>e0173776-e0173776</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Electrophysiological signals of cortical activity show a range of possible frequency and amplitude modulations, both within and across regions, collectively known as cross-frequency coupling. To investigate whether these modulations could be considered as manifestations of the same underlying mechanism, we developed a neural mass model. The model provides five out of the theoretically proposed six different coupling types. Within model components, slow and fast activity engage in phase-frequency coupling in conditions of low ambient noise level and with high noise level engage in phase-amplitude coupling. Between model components, these couplings can be coordinated via slow activity, giving rise to more complex modulations. The model, thus, provides a coherent account of cross-frequency coupling, both within and between components, with which regional and cross-regional frequency and amplitude modulations could be addressed.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28380064</pmid><doi>10.1371/journal.pone.0173776</doi><tpages>e0173776</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-04, Vol.12 (4), p.e0173776-e0173776
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1884461150
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Assemblies
Attention
Bifurcations
Biology and Life Sciences
Brain
Brain - physiology
Brain research
Chlorofluorocarbons
Chokes (Electricity)
Coding
Cognition
Cognition & reasoning
Cognitive ability
Computer simulation
Control theory
Cortex (auditory)
Cortex (temporal)
Coupling (molecular)
Couplings
Deep brain stimulation
EEG
Electroencephalography - methods
Electrophysiology
Engineering
Epilepsy
Event-related potentials
Excitability
Feedback
Frequency dependence
Hippocampus
Humans
Information processing
Information transfer
Interneurons
Ketamine
Luteinizing hormone
Mathematical models
Mechanical engineering
Medicine and Health Sciences
Methods
Models, Biological
Modulation
Neural circuitry
Neural networks
Neuroimaging
Neuromodulation
Neurons
Neurons - physiology
Noise
Noise levels
Oscillations
Phase shift
Physical Sciences
Population
Populations
Propagation
Relay
Research and Analysis Methods
Rhythm
Simulation
Sleep
Stimulation
Temporal lobe
Utilities
Visual cortex
Visual perception
title A neural mass model of cross frequency coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20mass%20model%20of%20cross%20frequency%20coupling&rft.jtitle=PloS%20one&rft.au=Chehelcheraghi,%20Mojtaba&rft.date=2017-04-05&rft.volume=12&rft.issue=4&rft.spage=e0173776&rft.epage=e0173776&rft.pages=e0173776-e0173776&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0173776&rft_dat=%3Cgale_plos_%3EA488661520%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884461150&rft_id=info:pmid/28380064&rft_galeid=A488661520&rft_doaj_id=oai_doaj_org_article_7c6729b35f6d423b9f84371189faba61&rfr_iscdi=true