A neural mass model of cross frequency coupling

Electrophysiological signals of cortical activity show a range of possible frequency and amplitude modulations, both within and across regions, collectively known as cross-frequency coupling. To investigate whether these modulations could be considered as manifestations of the same underlying mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-04, Vol.12 (4), p.e0173776-e0173776
Hauptverfasser: Chehelcheraghi, Mojtaba, van Leeuwen, Cees, Steur, Erik, Nakatani, Chie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrophysiological signals of cortical activity show a range of possible frequency and amplitude modulations, both within and across regions, collectively known as cross-frequency coupling. To investigate whether these modulations could be considered as manifestations of the same underlying mechanism, we developed a neural mass model. The model provides five out of the theoretically proposed six different coupling types. Within model components, slow and fast activity engage in phase-frequency coupling in conditions of low ambient noise level and with high noise level engage in phase-amplitude coupling. Between model components, these couplings can be coordinated via slow activity, giving rise to more complex modulations. The model, thus, provides a coherent account of cross-frequency coupling, both within and between components, with which regional and cross-regional frequency and amplitude modulations could be addressed.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0173776