Annexin A1 can inhibit the in vitro invasive ability of nasopharyngeal carcinoma cells possibly through Annexin A1/S100A9/Vimentin interaction
Annexin A1 is a member of a large superfamily of glucocorticoid-regulated, calcium- and phospholipid-binding proteins. Our previous studies have shown that the abnormal expression of Annexin A1 is related to the occurrence and development of nasopharyngeal carcinoma (NPC). To understand the roles of...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-03, Vol.12 (3), p.e0174383-e0174383 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Annexin A1 is a member of a large superfamily of glucocorticoid-regulated, calcium- and phospholipid-binding proteins. Our previous studies have shown that the abnormal expression of Annexin A1 is related to the occurrence and development of nasopharyngeal carcinoma (NPC). To understand the roles of Annexin A1 in the tumorigenesis of NPC, targeted proteomic analysis was performed on Annexin A1-associated proteins from NPC cells. We identified 436 proteins associated with Annexin A1, as well as two Annexin A1-interacted key proteins, S100A9 and Vimentin, which were confirmed by co-immunoprecipitation. Gene function classification revealed that the Annexin A1-associated proteins can be grouped into 21 clusters based on their molecular functions. Protein-protein interaction analysis indicated that Annexin A1 /S100A9/Vimentin interactions may be involved in the invasion and metastasis of NPC because they can form complexes in NPC cells. The down-regulation of Annexin A1 in NPC may lead to the overexpression of S100A9/Vimentin, which may increase the possibility of the invasion ability of NPC cells by adjusting the function of cytoskeleton proteins. Results suggested that the biological functions of Annexin A1 in NPC were diverse, and that Annexin A1 can inhibit the in vitro invasive ability of NPC cells through Annexin A1 /S100A9/Vimentin interaction. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0174383 |