Comparative analysis of gut microbiota of mosquito communities in central Illinois
The composition and structure of microbial communities that inhabit the mosquito midguts are poorly understood despite their well-documented potential to impede pathogen transmission. We used MiSeq sequencing of the 16S rRNA gene to characterize the bacterial communities of field-collected populatio...
Gespeichert in:
Veröffentlicht in: | PLoS neglected tropical diseases 2017-02, Vol.11 (2), p.e0005377-e0005377 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The composition and structure of microbial communities that inhabit the mosquito midguts are poorly understood despite their well-documented potential to impede pathogen transmission.
We used MiSeq sequencing of the 16S rRNA gene to characterize the bacterial communities of field-collected populations of 12 mosquito species. After quality filtering and rarefaction, the remaining sequences were assigned to 181 operational taxonomic units (OTUs). Approximately 58% of these OTUs occurred in at least two mosquito species but only three OTUs: Gluconobacter (OTU 1), Propionibacterium (OTU 9), and Staphylococcus (OTU 31) occurred in all 12 mosquito species. Individuals of different mosquito species shared similar gut microbiota and it was common for individuals of the same species from the same study site and collection date to harbor different gut microbiota. On average, the microbiota of Aedes albopictus was the least diverse and significantly less even compared to Anopheles crucians, An. quadrimaculatus, Ae. triseriatus, Ae. vexans, Ae. japonicus, Culex restuans, and Culiseta inornata. The microbial community of Cx. pipiens and Ae. albopictus differed significantly from all other mosquitoes species and was primarily driven by the dominance of Wolbachia.
These findings expand the range of mosquito species whose gut microbiota has been characterized and sets the foundation for further studies to determine the influence of these microbiota on vector susceptibility to pathogens. |
---|---|
ISSN: | 1935-2735 1935-2727 1935-2735 |
DOI: | 10.1371/journal.pntd.0005377 |