Salmonid alphavirus infection causes skin dysbiosis in Atlantic salmon (Salmo salar L.) post-smolts
Interactions among host, microbiota and viral pathogens are complex and poorly understood. The goal of the present study is to assess the changes in the skin microbial community of Atlantic salmon (Salmo salar L.) in response to experimental infection with salmonid alphavirus (SAV). The salmon skin...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-03, Vol.12 (3), p.e0172856-e0172856 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interactions among host, microbiota and viral pathogens are complex and poorly understood. The goal of the present study is to assess the changes in the skin microbial community of Atlantic salmon (Salmo salar L.) in response to experimental infection with salmonid alphavirus (SAV). The salmon skin microbial community was determined using 16S rDNA pyrosequencing in five different experimental groups: control, 7 days after infection with low-dose SAV, 14 days after infection with low-dose SAV, 7 days after infection with high-dose SAV, and 14 days after infection with high-dose SAV. Both infection treatment and time after infection were strong predictors of the skin microbial community composition. Skin samples from SAV3 infected fish showed an unbalanced microbiota characterized by a decreased abundance of Proteobacteria such as Oleispira sp. and increased abundances of opportunistic taxa including Flavobacteriaceae, Streptococcaceae and Tenacibaculum sp. These results demonstrate that viral infections can result in skin dysbiosis likely rendering the host more susceptible to secondary bacterial infections. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0172856 |