Motor Cortex Theta and Gamma Architecture in Young Adult APPswePS1dE9 Alzheimer Mice

Alzheimer's disease (AD) is a multifactorial disorder leading to progressive memory loss and eventually death. In this study, an APPswePS1dE9 AD mouse model has been analyzed for motor cortex theta, beta and gamma frequency alterations using computerized 3D stereotaxic electrode positioning and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-01, Vol.12 (1), p.e0169654-e0169654
Hauptverfasser: Papazoglou, Anna, Soos, Julien, Lundt, Andreas, Wormuth, Carola, Ginde, Varun Raj, Müller, Ralf, Henseler, Christina, Broich, Karl, Xie, Kan, Haenisch, Britta, Ehninger, Dan, Weiergräber, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alzheimer's disease (AD) is a multifactorial disorder leading to progressive memory loss and eventually death. In this study, an APPswePS1dE9 AD mouse model has been analyzed for motor cortex theta, beta and gamma frequency alterations using computerized 3D stereotaxic electrode positioning and implantable video-EEG radiotelemetry to perform long-term M1 recordings from both genders considering age, circadian rhythm and activity status of experimental animals. We previously demonstrated that APPswePS1dE9 mice exibit complex alterations in hippocampal frequency power and another recent investigation reported a global increase of alpha, beta and gamma power in APPswePS1dE9 in females of 16-17 weeks of age. In this cortical study in APPswePS1dE9 mice we did not observe any changes in theta, beta and particularly gamma power in both genders at the age of 14, 15, 18 and 19 weeks. Importantly, no activity dependence of theta, beta and gamma activity could be detected. These findings clearly point to the fact that EEG activity, particularly gamma power exhibits developmental changes and spatial distinctiveness in the APPswePS1dE9 mouse model of Alzheimer's disease.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0169654