Antibodies Targeting Closely Adjacent or Minimally Overlapping Epitopes Can Displace One Another

Here we describe how real-time label-free biosensors can be used to identify antibodies that compete for closely adjacent or minimally overlapping epitopes on their specific antigen via a mechanism of antibody displacement. By kinetically perturbing one another's binding towards their antigen v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-01, Vol.12 (1), p.e0169535-e0169535
Hauptverfasser: Abdiche, Yasmina Noubia, Yeung, Andy Yik, Ni, Irene, Stone, Donna, Miles, Adam, Morishige, Winse, Rossi, Andrea, Strop, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we describe how real-time label-free biosensors can be used to identify antibodies that compete for closely adjacent or minimally overlapping epitopes on their specific antigen via a mechanism of antibody displacement. By kinetically perturbing one another's binding towards their antigen via the formation of a transient trimolecular complex, antibodies can displace one another in a fully reversible and dose-dependent manner. Displacements can be readily identified when epitope binning assays are performed in a classical sandwich assay format whereby a solution antibody (analyte) is tested for binding to its antigen that is first captured via an immobilized antibody (ligand) because an inverted sandwiching response is observed when an analyte displaces a ligand, signifying the antigen's unusually rapid dissociation from its ligand. In addition to classifying antibodies within a panel in terms of their ability to block or sandwich pair with one another, displacement provides a hybrid mechanism of competition. Using high-throughput epitope binning studies we demonstrate that displacements can be observed on any target, if the antibody panel contains appropriate epitope diversity. Unidirectional displacements occurring between disparate-affinity antibodies can generate apparent asymmetries in a cross-blocking experiment, confounding their interpretation. However, examining competition across a wide enough concentration range will often reveal that these displacements are reversible. Displacement provides a gentle and efficient way of eluting antigen from an otherwise high affinity binding partner which can be leveraged in designing reagents or therapeutic antibodies with unique properties.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0169535