Neuronal Ndrg4 Is Essential for Nodes of Ranvier Organization in Zebrafish

Axon ensheathment by specialized glial cells is an important process for fast propagation of action potentials. The rapid electrical conduction along myelinated axons is mainly due to its saltatory nature characterized by the accumulation of ion channels at the nodes of Ranvier. However, how these i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2016-11, Vol.12 (11), p.e1006459-e1006459
Hauptverfasser: Fontenas, Laura, De Santis, Flavia, Di Donato, Vincenzo, Degerny, Cindy, Chambraud, Béatrice, Del Bene, Filippo, Tawk, Marcel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Axon ensheathment by specialized glial cells is an important process for fast propagation of action potentials. The rapid electrical conduction along myelinated axons is mainly due to its saltatory nature characterized by the accumulation of ion channels at the nodes of Ranvier. However, how these ion channels are transported and anchored along axons is not fully understood. We have identified N-myc downstream-regulated gene 4, ndrg4, as a novel factor that regulates sodium channel clustering in zebrafish. Analysis of chimeric larvae indicates that ndrg4 functions autonomously within neurons for sodium channel clustering at the nodes. Molecular analysis of ndrg4 mutants shows that expression of snap25 and nsf are sharply decreased, revealing a role of ndrg4 in controlling vesicle exocytosis. This uncovers a previously unknown function of ndrg4 in regulating vesicle docking and nodes of Ranvier organization, at least through its ability to finely tune the expression of the t-SNARE/NSF machinery.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1006459