The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana
The function of miR165/166 in plant growth and development has been extensively studied, however, its roles in abiotic stress responses remain largely unknown. Here, we report that reduction in the expression of miR165/166 conferred a drought and cold resistance phenotype and hypersensitivity to ABA...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2016-11, Vol.12 (11), p.e1006416-e1006416 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The function of miR165/166 in plant growth and development has been extensively studied, however, its roles in abiotic stress responses remain largely unknown. Here, we report that reduction in the expression of miR165/166 conferred a drought and cold resistance phenotype and hypersensitivity to ABA during seed germination and post-germination seedling development. We further show that the ABA hypersensitive phenotype is associated with a changed transcript abundance of ABA-responsive genes and a higher expression level of ABI4, which can be directly regulated by a miR165/166 target. Additionally, we found that reduction in miR165/166 expression leads to elevated ABA levels, which occurs at least partially through the increased expression of BG1, a gene that is directly regulated by a miR165/166 target. Taken together, our results uncover a novel role for miR165/166 in the regulation of ABA and abiotic stress responses and control of ABA homeostasis. |
---|---|
ISSN: | 1553-7404 1553-7390 1553-7404 |
DOI: | 10.1371/journal.pgen.1006416 |