Gene Co-Expression Network Analysis Unraveling Transcriptional Regulation of High-Altitude Adaptation of Tibetan Pig
Tibetan pigs have survived at high altitude for millennia and they have a suite of adaptive features to tolerate the hypoxic environment. However, the molecular mechanisms underlying the regulation of hypoxia-adaptive phenotypes have not been completely elucidated. In this study, we analyzed differe...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-12, Vol.11 (12), p.e0168161-e0168161 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tibetan pigs have survived at high altitude for millennia and they have a suite of adaptive features to tolerate the hypoxic environment. However, the molecular mechanisms underlying the regulation of hypoxia-adaptive phenotypes have not been completely elucidated. In this study, we analyzed differentially expressed genes (DEGs), biological pathways and constructed co-expression regulation networks using whole-transcriptome microarrays from lung tissues of Tibetan and Duroc pigs both at high and low altitude. A total of 3,066 DEGs were identified and this list was over-represented for the ontology terms including metabolic process, catalytic activity, and KEGG pathway including metabolic pathway and PI3K-Akt signaling pathway. The regulatory (RIF) and phenotypic (PIF) impact factor analysis identified several known and several potentially novel regulators of hypoxia adaption, including: IKBKG, KLF6 and RBPJ (RIF1), SF3B1, EFEMP1, HOXB6 and ATF6 (RIF2). These findings provide new details of the regulatory architecture of hypoxia-adaptive genes and also insight into which genes may undergo epigenetic modification for further study in the high-altitude adaptation. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0168161 |