VEGF Production by Ly6C+high Monocytes Contributes to Ventilator-Induced Lung Injury

Mechanical ventilation is a life-saving procedure for patients with acute respiratory failure, although it may cause pulmonary vascular inflammation and leakage, leading to ventilator-induced lung injury (VILI). Ly6C+high monocytes are involved in the pathogenesis of VILI. In this study, we investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-10, Vol.11 (10), p.e0165317-e0165317
Hauptverfasser: Shi, Chung-Sheng, Huang, Tzu-Hsiung, Lin, Chin-Kuo, Li, Jhy-Ming, Chen, Mei-Hsin, Tsai, Mei-Ling, Chang, Chih-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanical ventilation is a life-saving procedure for patients with acute respiratory failure, although it may cause pulmonary vascular inflammation and leakage, leading to ventilator-induced lung injury (VILI). Ly6C+high monocytes are involved in the pathogenesis of VILI. In this study, we investigated whether pulmonary infiltrated Ly6C+high monocytes produce vascular endothelial growth factor (VEGF) and contribute to VILI. A clinically relevant two-hit mouse model of VILI, with intravenous lipopolysaccharide (LPS, 20 ng/mouse) immediately before high tidal volume (HTV, 20 mL/kg) ventilation (LPS+HTV), was established. Blood gas and respiratory mechanics were measured to ensure the development of VILI. Flow cytometry and histopathological analyses revealed pulmonary infiltration of leukocytes subsets. Clodronate liposomes were intravenously injected to deplete pulmonary monocytes. In vitro endothelial cell permeability assay with sorted Ly6C+high monocytes condition media assessed the role of Ly6C+high monocytes in vascular permeability. LPS+HTV significantly increased total proteins, TNF-α, IL-6, vascular endothelial growth factor (VEGF) and mononuclear cells in the bronchoalveolar lavage fluid (BALF). Pulmonary Ly6C+high monocytes (SSClowCD11b+F4/80+Ly6C+high), but not Ly6C+low monocytes (SSClowCD11b+F4/80+Ly6C+low), were significantly elevated starting at 4 hr. Clodronate liposomes were able to significantly reduce pulmonary Ly6C+high monocytes, and VEGF and total protein in BALF, and restore PaO2/FiO2. There was a strong correlation between pulmonary Ly6C+high monocytes and BALF VEGF (R2 = 0.8791, p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0165317