Quantitative T1, T2, and T2 Mapping and Semi-Quantitative Neuromelanin-Sensitive Magnetic Resonance Imaging of the Human Midbrain

Neuromelanin is a dark pigment granule present within certain catecholamine neurons of the human brain. Here, we aimed to clarify the relationship between contrast of neuromelanin-sensitive magnetic resonance imaging (MRI) and MR relaxation times using T1, T2, and T2* mapping of the lower midbrain....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-10, Vol.11 (10), p.e0165160-e0165160
Hauptverfasser: Hashido, Takashi, Saito, Shigeyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuromelanin is a dark pigment granule present within certain catecholamine neurons of the human brain. Here, we aimed to clarify the relationship between contrast of neuromelanin-sensitive magnetic resonance imaging (MRI) and MR relaxation times using T1, T2, and T2* mapping of the lower midbrain. The subjects were 14 healthy volunteers (11 men and 3 women, mean age 29.9 ± 6.9 years). Neuromelanin-sensitive MRI was acquired using an optimized T1-weighted two-dimensional (2D)-turbo spin-echo sequence. To quantitatively evaluate the relaxation time, 2D-image data for the T1, T2, and T2* maps were also acquired. The regions of interest (substantia nigra pars compacta [SNc], superior cerebellar peduncles [SCP], cerebral peduncles [CP], and midbrain tegmentum [MT]) were manually drawn on neuromelanin-sensitive MRI to measure the contrast ratio (CR) and on relaxation maps to measure the relaxation times. The CR in the SNc was significantly higher than the CRs in the SCP and CP. Compared to the SCP and CP, the SNc had significantly higher T1 relaxation times. Moreover, the SNc had significantly lower T2 and T2* relaxation times than the other three regions (SCP, CP, and MT). Correlation analyses showed no significant correlations between the CRs in the SNc, SCP, and CP and each relaxation time. We demonstrated the relationship between the CR of neuromelanin-sensitive MRI and the relaxation times of quantitative maps of the human midbrain.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0165160