Astroglia in Thick Tissue with Super Resolution and Cellular Reconstruction
We utilized the recently published method of passive CLARITY to explore brain astrocytes for the first time with our optimized method. Astrocytes are the fundamental cells in the brain that act to maintain the synaptic activity of neurons, support metabolism of all neurons, and communicate through e...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-08, Vol.11 (8), p.e0160391-e0160391 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We utilized the recently published method of passive CLARITY to explore brain astrocytes for the first time with our optimized method. Astrocytes are the fundamental cells in the brain that act to maintain the synaptic activity of neurons, support metabolism of all neurons, and communicate through extensive networks throughout the CNS. They are the defining cell that differentiates lower organisms from humans. From a disease vantage point they are the principal cause of brain tumors and the propagator of neurodegenerative diseases like amyotrophic lateral sclerosis. New methods to study these cells is paramount. Our modified use of CLARITY provides a new way to study these brain cells. To reduce cost, speed up tissue clearing process, reduce human handling error, and to retrieve quantifiable data from single confocal and pseudo-super resolution microscopy we modified and optimized the original protocol. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0160391 |