Comparison of Respondent Driven Sampling Estimators to Determine HIV Prevalence and Population Characteristics among Men Who Have Sex with Men in Moscow, Russia

Analytically distinct estimators have been proposed for the calculation of population-based estimates derived from respondent-driven sampling (RDS), yet there have been few comparisons of the inferences from these estimators using empirical data. We compared estimates produced by unweighted analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-06, Vol.11 (6), p.e0155519-e0155519
Hauptverfasser: Wirtz, Andrea L, Mehta, Shruti H, Latkin, Carl, Zelaya, Carla E, Galai, Noya, Peryshkina, Alena, Mogilnyi, Vladimir, Dzhigun, Petr, Kostetskaya, Irina, Beyrer, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analytically distinct estimators have been proposed for the calculation of population-based estimates derived from respondent-driven sampling (RDS), yet there have been few comparisons of the inferences from these estimators using empirical data. We compared estimates produced by unweighted analysis used to calculate sample proportions and by three available estimators that are used to calculate population proportions, RDS-I, RDS-II (Volz-Heckathorn), and Gile's RDS-SS. Data were derived from a cross-sectional, RDS study of men who have sex with men (MSM) conducted from October 2010 to April 2013 in Moscow, Russia (N = 1,376, recruitment depth: 31 waves). Analyses investigated the influence of key parameters: recruitment depth, homophily, and network size on sample and population estimates. Variability in results produced by the estimators and recruitment depth were statistically compared using the coefficient of variation (CV). Sample proportions had the least variability across different recruitment depths, compared to the RDS estimators. Population estimates tended to differ at lower recruitment depth but were approximately equal after reaching sampling equilibrium, highlighting the importance of sampling to greater recruitment depth. All estimators incorporate inverse probability weighting using self-reported network size, explaining the similarities in across population estimates and the difference of these estimates relative to sample proportions. Current biases and limitations associated with RDS estimators are discussed.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0155519