Maternal Smoking during Pregnancy and DNA-Methylation in Children at Age 5.5 Years: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study

Mounting evidence links prenatal exposure to maternal tobacco smoking with disruption of DNA methylation (DNAm) profile in the blood of infants. However, data on the postnatal stability of such DNAm signatures in childhood, as assessed by Epigenome Wide Association Studies (EWAS), are scarce. Object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-05, Vol.11 (5), p.e0155554-e0155554
Hauptverfasser: Rzehak, Peter, Saffery, Richard, Reischl, Eva, Covic, Marcela, Wahl, Simone, Grote, Veit, Xhonneux, Annick, Langhendries, Jean-Paul, Ferre, Natalia, Closa-Monasterolo, Ricardo, Verduci, Elvira, Riva, Enrica, Socha, Piotr, Gruszfeld, Dariusz, Koletzko, Berthold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mounting evidence links prenatal exposure to maternal tobacco smoking with disruption of DNA methylation (DNAm) profile in the blood of infants. However, data on the postnatal stability of such DNAm signatures in childhood, as assessed by Epigenome Wide Association Studies (EWAS), are scarce. Objectives of this study were to investigate DNAm signatures associated with in utero tobacco smoke exposure beyond the 12th week of gestation in whole blood of children at age 5.5 years, to replicate previous findings in young European and American children and to assess their biological role by exploring databases and enrichment analysis. DNA methylation was measured in blood of 366 children of the multicentre European Childhood Obesity Project Study using the Illumina Infinium HM450 Beadchip (HM450K). An EWAS was conducted using linear regression of methylation values at each CpG site against in utero smoke exposure, adjusted for study characteristics, biological and technical effects. Methylation levels at five HM450K probes in MYO1G (cg12803068, cg22132788, cg19089201), CNTNAP2 (cg25949550), and FRMD4A (cg11813497) showed differential methylation that reached epigenome-wide significance according to the false-discovery-rate (FDR) criteria (q-value
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0155554