Viral Transmission Dynamics at Single-Cell Resolution Reveal Transiently Immune Subpopulations Caused by a Carrier State Association

Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22) throughout a population of its host (Salmonella Typhimurium) at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities precedi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2015-12, Vol.11 (12), p.e1005770-e1005770
Hauptverfasser: Cenens, William, Makumi, Angela, Govers, Sander K, Lavigne, Rob, Aertsen, Abram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22) throughout a population of its host (Salmonella Typhimurium) at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities preceding the process of lysogenization. More specifically, an infection event ultimately leading to a lysogen first yielded a phage carrier cell harboring a polarly tethered P22 episome. Upon subsequent division, the daughter cell inheriting this episome became lysogenized by an integration event yielding a prophage, while the other daughter cell became P22-free. However, since the phage carrier cell was shown to overproduce immunity factors that are cytoplasmically inherited by the P22-free daughter cell and further passed down to its siblings, a transiently resistant subpopulation was generated that upon dilution of these immunity factors again became susceptible to P22 infection. The iterative emergence and infection of transiently resistant subpopulations suggests a new bet-hedging strategy by which viruses could manage to sustain both vertical and horizontal transmission routes throughout an infected population without compromising a stable co-existence with their host.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1005770