NeuroKinect: A Novel Low-Cost 3Dvideo-EEG System for Epileptic Seizure Motion Quantification

Epilepsy is a common neurological disorder which affects 0.5-1% of the world population. Its diagnosis relies both on Electroencephalogram (EEG) findings and characteristic seizure-induced body movements--called seizure semiology. Thus, synchronous EEG and (2D)video recording systems (known as Video...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016, Vol.11 (1), p.e0145669-e0145669
Hauptverfasser: Cunha, João Paulo Silva, Choupina, Hugo Miguel Pereira, Rocha, Ana Patrícia, Fernandes, José Maria, Achilles, Felix, Loesch, Anna Mira, Vollmar, Christian, Hartl, Elisabeth, Noachtar, Soheyl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epilepsy is a common neurological disorder which affects 0.5-1% of the world population. Its diagnosis relies both on Electroencephalogram (EEG) findings and characteristic seizure-induced body movements--called seizure semiology. Thus, synchronous EEG and (2D)video recording systems (known as Video-EEG) are the most accurate tools for epilepsy diagnosis. Despite the establishment of several quantitative methods for EEG analysis, seizure semiology is still analyzed by visual inspection, based on epileptologists' subjective interpretation of the movements of interest (MOIs) that occur during recorded seizures. In this contribution, we present NeuroKinect, a low-cost, easy to setup and operate solution for a novel 3Dvideo-EEG system. It is based on a RGB-D sensor (Microsoft Kinect camera) and performs 24/7 monitoring of an Epilepsy Monitoring Unit (EMU) bed. It does not require the attachment of any reflectors or sensors to the patient's body and has a very low maintenance load. To evaluate its performance and usability, we mounted a state-of-the-art 6-camera motion-capture system and our low-cost solution over the same EMU bed. A comparative study of seizure-simulated MOIs showed an average correlation of the resulting 3D motion trajectories of 84.2%. Then, we used our system on the routine of an EMU and collected 9 different seizures where we could perform 3D kinematic analysis of 42 MOIs arising from the temporal (TLE) (n = 19) and extratemporal (ETE) brain regions (n = 23). The obtained results showed that movement displacement and movement extent discriminated both seizure MOI groups with statistically significant levels (mean = 0.15 m vs. 0.44 m, p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0145669