Projected Scenarios for Coastal First Nations' Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities

Studies have demonstrated ways in which climate-related shifts in the distributions and relative abundances of marine species are expected to alter the dynamics and catch potential of global fisheries. While these studies assess impacts on large-scale commercial fisheries, few efforts have been made...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-01, Vol.11 (1), p.e0145285
Hauptverfasser: Weatherdon, Lauren V, Ota, Yoshitaka, Jones, Miranda C, Close, David A, Cheung, William W L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies have demonstrated ways in which climate-related shifts in the distributions and relative abundances of marine species are expected to alter the dynamics and catch potential of global fisheries. While these studies assess impacts on large-scale commercial fisheries, few efforts have been made to quantitatively project impacts on small-scale subsistence and commercial fisheries that are economically, socially and culturally important to many coastal communities. This study uses a dynamic bioclimate envelope model to project scenarios of climate-related changes in the relative abundance, distribution and richness of 98 exploited marine fishes and invertebrates of commercial and cultural importance to First Nations in coastal British Columbia, Canada. Declines in abundance are projected for most of the sampled species under both the lower (Representative Concentration Pathway [RCP] 2.6) and higher (RCP 8.5) emission scenarios (-15.0% to -20.8%, respectively), with poleward range shifts occurring at a median rate of 10.3 to 18.0 km decade(-1) by 2050 relative to 2000. While a cumulative decline in catch potential is projected coastwide (-4.5 to -10.7%), estimates suggest a strong positive correlation between the change in relative catch potential and latitude, with First Nations' territories along the northern and central coasts of British Columbia likely to experience less severe declines than those to the south. Furthermore, a strong negative correlation is projected between latitude and the number of species exhibiting declining abundance. These trends are shown to be robust to alternative species distribution models. This study concludes by discussing corresponding management challenges that are likely to be encountered under climate change, and by highlighting the value of joint-management frameworks and traditional fisheries management approaches that could aid in offsetting impacts and developing site-specific mitigation and adaptation strategies derived from local fishers' knowledge.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0145285