CXCR7 Is Involved in Human Oligodendroglial Precursor Cell Maturation
Differentiation of oligodendroglial precursor cells (OPCs), a crucial prerequisite for central nervous system (CNS) remyelination in diseases such as Multiple Sclerosis (MS), is modulated by a multitude of extrinsic and intrinsic factors. In a previous study we revealed that the chemokine CXCL12 sti...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-01, Vol.11 (1), p.e0146503-e0146503 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Differentiation of oligodendroglial precursor cells (OPCs), a crucial prerequisite for central nervous system (CNS) remyelination in diseases such as Multiple Sclerosis (MS), is modulated by a multitude of extrinsic and intrinsic factors. In a previous study we revealed that the chemokine CXCL12 stimulates rodent OPC differentiation via activation of its receptor CXCR7. We could now demonstrate that CXCR7 is also expressed on NogoA- and Nkx2.2-positive oligodendroglial cells in human MS brains and that stimulation of cultured primary fetal human OPCs with CXCL12 promotes their differentiation as measured by surface marker expression and morphologic complexity. Pharmacological inhibition of CXCR7 effectively blocks these CXCL12-dependent effects. Our findings therefore suggest that a specific activation of CXCR7 could provide a means to promote oligodendroglial differentiation facilitating endogenous remyelination activities. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0146503 |