Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?

A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF) was investigated as a microbially-induced slow-release nitrogen (N) and phosphorus (P) fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-12, Vol.10 (12), p.e0144169-e0144169
Hauptverfasser: Anstoetz, Manuela, Rose, Terry J, Clark, Malcolm W, Yee, Lachlan H, Raymond, Carolyn A, Vancov, Tony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF) was investigated as a microbially-induced slow-release nitrogen (N) and phosphorus (P) fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investigated using OPA-MOF vs standard P (triple-superphosphate) and N (urea) fertilizers in an acidic Ferralsol at two application rates (equivalent 120 and 40 kg N ha(-1)). While urea hydrolysis in the OPA-MOF treatment was rapid, conversion of ammonium to nitrate was significantly inhibited compared to urea treatment. Reduced wheat growth in OPA-MOF treatments was not caused by N-deficiency, but by limited P-bioavailability. Two likely reasons were slow P-mobilisation from the OPA-MOF or rapid P-binding in the acid soil. P-uptake and yield in OPA-MOF treatments were significantly higher than in nil-P controls, but significantly lower than in conventionally-fertilised plants. OPA-MOF showed potential as enhanced efficiency N fertilizer. However, as P-bioavailability was insufficient to meet plant demands, further work should determine if P-availability may be enhanced in alkaline soils, or whether central ions other than Fe, forming the inorganic metal-P framework in the MOF, may act as a more effective P-source in acid soils.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0144169