Efficient and Unbiased Estimation of Population Size

Population sizing from still aerial pictures is of wide applicability in ecological and social sciences. The problem is long standing because current automatic detection and counting algorithms are known to fail in most cases, and exhaustive manual counting is tedious, slow, difficult to verify and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-11, Vol.10 (11), p.e0141868-e0141868
Hauptverfasser: Cruz, Marcos, Gómez, Domingo, Cruz-Orive, Luis M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Population sizing from still aerial pictures is of wide applicability in ecological and social sciences. The problem is long standing because current automatic detection and counting algorithms are known to fail in most cases, and exhaustive manual counting is tedious, slow, difficult to verify and unfeasible for large populations. An alternative is to multiply population density with some reference area but, unfortunately, sampling details, handling of edge effects, etc., are seldom described. For the first time we address the problem using principles of geometric sampling. These principles are old and solid, but largely unknown outside the areas of three dimensional microscopy and stereology. Here we adapt them to estimate the size of any population of individuals lying on an essentially planar area, e.g. people, animals, trees on a savanna, etc. The proposed design is unbiased irrespective of population size, pattern, perspective artifacts, etc. The implementation is very simple-it is based on the random superimposition of coarse quadrat grids. Also, an objective error assessment is often lacking. For the latter purpose the quadrat counts are often assumed to be independent. We demonstrate that this approach can perform very poorly, and we propose (and check via Monte Carlo resampling) a new theoretical error prediction formula. As far as efficiency, counting about 50 (100) individuals in 20 quadrats, can yield relative standard errors of about 8% (5%) in typical cases. This fact effectively breaks the barrier hitherto imposed by the current lack of automatic face detection algorithms, because semiautomatic sampling and manual counting becomes an attractive option.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0141868