The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds

Calophyllum inophyllum L. (Calophyllaceae) is an evergreen tree ethno-medically used along the seashores and islands of the Indian and Pacific Oceans, especially in Polynesia. Oil extracted from the seeds is traditionally used topically to treat a wide range of skin injuries from burn, scar and infe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-09, Vol.10 (9), p.e0138602-20
Hauptverfasser: Léguillier, Teddy, Lecsö-Bornet, Marylin, Lémus, Christelle, Rousseau-Ralliard, Delphine, Lebouvier, Nicolas, Hnawia, Edouard, Nour, Mohammed, Aalbersberg, William, Ghazi, Kamelia, Raharivelomanana, Phila, Rat, Patrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calophyllum inophyllum L. (Calophyllaceae) is an evergreen tree ethno-medically used along the seashores and islands of the Indian and Pacific Oceans, especially in Polynesia. Oil extracted from the seeds is traditionally used topically to treat a wide range of skin injuries from burn, scar and infected wounds to skin diseases such as dermatosis, urticaria and eczema. However, very few scientific studies reported and quantified the therapeutic properties of Calophyllum inophyllum oil (CIO). In this work, five CIO from Indonesia (CIO1), Tahiti (CIO2, 3), Fiji islands (CIO4) and New Caledonia (CIO5) were studied and their cytotoxic, wound healing, and antibacterial properties were presented in order to provide a scientific support to their traditional use and verify their safety. The safety of the five CIO was ascertained using the Alamar blue assay on human keratinocyte cells. CIO wound healing properties were determined using the scratch test assay on human keratinocyte cells. CIO-stimulated antibacterial innate immune response was evaluated using ELISA by measuring β defensin-2 release in human derivative macrophage cells. CIO antibacterial activity was tested using oilogramme against twenty aerobic Gram- bacteria species, twenty aerobic Gram+ bacteria species, including a multi-drug resistant Staphylococcus aureus strain and two anaerobic Gram+ bacteria species e.g. Propionibacterium acnes and Propionibacterium granulosum. To detect polarity profile of the components responsible of the antibacterial activity, we performed bioautography against a Staphylococcus aureus strain. Based on Alamar Blue assay, we showed that CIO can be safely used on keratinocyte cells between 2.7% and 11.2% depending on CIO origin. Concerning the healing activity, all the CIO tested accelerated in vitro wound closure, the healing factor being 1.3 to 2.1 higher compared to control when keratinocytes were incubated after scratch with CIO at 0.1%. Furthermore, our results showed that CIO exhibit two distinct antibacterial effects: one against Gram+ bacteria by direct inhibition of mitotic growth and another potent effect against Gram- bacteria due to increased release of β-defensin 2 peptide by macrophages. Interestingly, the needed concentrations of CIO to inhibit bacteria growth and to promote wound healing are lower than concentrations exhibiting cytotoxic effects on keratinocyte cells. Finally, we performed bioautography assay against Staphylococcus aureus to determine polarit
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0138602