The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination

Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-08, Vol.10 (8), p.e0135197-e0135197
Hauptverfasser: Li, Juan, Hettenhausen, Christian, Sun, Guiling, Zhuang, Huifu, Li, Jian-Hong, Wu, Jianqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder) comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA). Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0135197