Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys

Five types of porous Nickel-Titanium (NiTi) alloy samples of different porosities and pore sizes were fabricated. According to compressive and fracture strengths, three groups of porous NiTi alloy samples underwent further cytocompatibility experiments. Porous NiTi alloys exhibited a lower Young...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-06, Vol.10 (6), p.e0128138-e0128138, Article e0128138
Hauptverfasser: Jian, Yu-Tao, Yang, Yue, Tian, Tian, Stanford, Clark, Zhang, Xin-Ping, Zhao, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Five types of porous Nickel-Titanium (NiTi) alloy samples of different porosities and pore sizes were fabricated. According to compressive and fracture strengths, three groups of porous NiTi alloy samples underwent further cytocompatibility experiments. Porous NiTi alloys exhibited a lower Young's modulus (2.0 GPa ~ 0.8 GPa). Both compressive strength (108.8 MPa ~ 56.2 MPa) and fracture strength (64.6 MPa ~ 41.6 MPa) decreased gradually with increasing mean pore size (MPS). Cells grew and spread well on all porous NiTi alloy samples. Cells attached more strongly on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cell adhesion on porous NiTi alloys was correlated negatively to MPS (277.2 μm ~ 566.5 μm; p < 0.05). More cells proliferated on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cellular ALP activity on all porous NiTi alloy samples was higher than on control group and blank group (p < 0.05). The porous NiTi alloys with optimized pore size could be a potential orthopedic material.
ISSN:1932-6203
1932-6203
DOI:10.1371/JOURNAL.PONE.0128138