Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation

Inflammatory bowel diseases are associated with dysregulated electrolyte and water transport and resultant diarrhea. Aquaporins are transmembrane proteins that function as water channels in intestinal epithelial cells. We investigated the effect of the inflammatory cytokine, interferon-γ, which is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3), p.e0118713-e0118713
Hauptverfasser: Dicay, Michael S, Hirota, Christina L, Ronaghan, Natalie J, Peplowski, Michael A, Zaheer, Raza S, Carati, Colin A, MacNaughton, Wallace K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inflammatory bowel diseases are associated with dysregulated electrolyte and water transport and resultant diarrhea. Aquaporins are transmembrane proteins that function as water channels in intestinal epithelial cells. We investigated the effect of the inflammatory cytokine, interferon-γ, which is a major player in inflammatory bowel diseases, on aquaporin-1 expression in a mouse colonic epithelial cell line, CMT93. CMT93 monolayers were exposed to 10 ng/mL interferon-γ and aquaporin-1 mRNA and protein expressions were measured by real-time PCR and western blot, respectively. In other experiments, CMT93 cells were pretreated with inhibitors or were transfected with siRNA to block the effects of Janus kinases, STATs 1 and 3, or interferon regulatory factor 2, prior to treatment with interferon-γ. Interferon-γ decreased aquaporin-1 expression in mouse intestinal epithelial cells in a manner that did not depend on the classical STAT1/JAK2/IRF-1 pathway, but rather, on an alternate Janus kinase (likely JAK1) as well as on STAT3. The pro-inflammatory cytokine, interferon-γ may contribute to diarrhea associated with intestinal inflammation in part through regulation of the epithelial aquaporin-1 water channel via a non-classical JAK/STAT receptor signalling pathway.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0118713