The effect of biochar and its interaction with the earthworm Pontoscolex corethrurus on soil microbial community structure in tropical soils

Biochar effects on soil microbial abundance and community structure are keys for understanding the biogeochemical cycling of nutrients and organic matter turnover, but are poorly understood, in particular in tropical areas. We conducted a greenhouse experiment in which we added biochars produced fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-04, Vol.10 (4), p.e0124891-e0124891
Hauptverfasser: Paz-Ferreiro, Jorge, Liang, Chenfei, Fu, Shenglei, Mendez, Ana, Gasco, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biochar effects on soil microbial abundance and community structure are keys for understanding the biogeochemical cycling of nutrients and organic matter turnover, but are poorly understood, in particular in tropical areas. We conducted a greenhouse experiment in which we added biochars produced from four different feedstocks [sewage sludge (B1), deinking sewage sludge (B2), Miscanthus (B3) and pine wood (B4)] at a rate of 3% (w/w) to two tropical soils (an Acrisol and a Ferralsol) planted with proso millet (Panicum milliaceum L.). The interactive effect of the addition of earthworms was also addressed. For this purpose we utilized soil samples from pots with or without the earthworm Pontoscolex corethrurus, which is a ubiquitous earthworm in tropical soils. Phospholipid fatty acid (PLFA) measurements showed that biochar type, soil type and the presence of earthworms significantly affected soil microbial community size and structure. In general, biochar addition affected fungal but not bacterial populations. Overall, biochars rich in ash (B1 and B2) resulted in a marked increase in the fungi to bacteria ratio, while this ratio was unaltered after addition of biochars with a high fixed carbon content (B3 and B4). Our study remarked the contrasting effect that both, biochar prepared from different materials and macrofauna, can have on soil microbial community. Such changes might end up with ecosystem-level effects.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0124891