Changes in the mechanical properties and composition of bone during microdamage repair

Under normal conditions, loading activities result in microdamage in the living skeleton, which is repaired by bone remodeling. However, microdamage accumulation can affect the mechanical properties of bone and increase the risk of fracture. This study aimed to determine the effect of microdamage on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-10, Vol.9 (10), p.e108324-e108324
Hauptverfasser: Wang, Gang, Qu, Xinhua, Yu, Zhifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under normal conditions, loading activities result in microdamage in the living skeleton, which is repaired by bone remodeling. However, microdamage accumulation can affect the mechanical properties of bone and increase the risk of fracture. This study aimed to determine the effect of microdamage on the mechanical properties and composition of bone. Fourteen male goats aged 28 months were used in the present study. Cortical bone screws were placed in the tibiae to induce microdamage around the implant. The goats were euthanized, and 3 bone segments with the screws in each goat were removed at 0 days, 21 days, 4 months, and 8 months after implantation. The bone segments were used for observing microdamage and bone remodeling, as well as nanoindentation and bone composition, separately. Two regions were measured: the first region (R1), located 1.5 mm from the interface between the screw hole and bone; and the second region (R2), located>1.5 mm from the bone-screw interface. Both diffuse and linear microdamage decreased significantly with increasing time after surgery, with the diffuse microdamage disappearing after 8 months. Thus, screw implantation results in increased bone remodeling either in the proximal or distal cortical bone, which repairs the microdamage. Moreover, bone hardness and elastic modulus decreased with microdamage repair, especially in the proximal bone tissue. Bone composition changed greatly during the production and repair of microdamage, especially for the C (Carbon) and Ca (Calcium) in the R1 region. In conclusion, the presence of mechanical microdamage accelerates bone remodeling either in the proximal or distal cortical bone. The bone hardness and elastic modulus decreased with microdamage repair, with the micromechanical properties being restored on complete repair of the microdamage. Changes in bone composition may contribute to changes in bone mechanical properties.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0108324