Membrane lipid remodelling of Meconopsis racemosa after its introduction into lowlands from an alpine environment
Membrane lipids, which determine the integrity and fluidity of membranes, are sensitive to environmental changes. The influence of stresses, such as cold and phosphorus deficiency, on lipid metabolism is well established. However, little is known about how plant lipid profiles change in response to...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-09, Vol.9 (9), p.e106614-e106614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e106614 |
---|---|
container_issue | 9 |
container_start_page | e106614 |
container_title | PloS one |
container_volume | 9 |
creator | Zheng, Guowei Tian, Bo Li, Weiqi |
description | Membrane lipids, which determine the integrity and fluidity of membranes, are sensitive to environmental changes. The influence of stresses, such as cold and phosphorus deficiency, on lipid metabolism is well established. However, little is known about how plant lipid profiles change in response to environmental changes during introduction, especially when plants are transferred from extreme conditions to moderate ones. Using a lipidomics approach, we profiled the changes in glycerolipid molecules upon the introduction of the alpine ornamental species Meconopsis racemosa from the alpine region of Northwest Yunnan to the lowlands of Kunming, China. We found that the ratios of digalactosyldiacylglycerol/monogalactosyldiacylglycerol (DGDG/MGDG) and phosphatidylcholine/phosphatidylethanolamine (PC/PE) remained unchanged. Introduction of M. racemosa from an alpine environment to a lowland environment results in two major effects. The first is a decline in the level of plastidic lipids, especially galactolipids. The second, which concerns a decrease of the double-bond index (DBI) and could make the membrane more gel-like, is a response to high temperatures. Changes in the lipidome after M. racemosa was introduced to a lowland environment were the reverse of those that occur when plants are exposed to phosphorus deficiency or cold stress. |
doi_str_mv | 10.1371/journal.pone.0106614 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1559783662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416975871</galeid><doaj_id>oai_doaj_org_article_f981d2a3ab844de5ae4cb1b33348930d</doaj_id><sourcerecordid>A416975871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-78125e919dcb93c5b3fdbce7fc5f0c1f6e2a4df74882bb1ac3338df2592bb65f3</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBYQkJw2MWOY8e5IFUVj5VaVeJ1tRw_dl05dmonBb49DptWG9QD8sGv3_zHM-MpiucIrhGu0burMEYv3LoPXq8hgpSi6kFxjBpcrmgJ8cOD9VHxJKUrCAlmlD4ujkqCWEUxOS6uL3TXRuE1cLa3CkTdBaWds34LggEXWgYf-mQTiELmuySAMIOOwA4JWD_EoEY52OCnTQAu_HTCqwRMDB0QHgjX2yyu_Y2NwXfaD0-LR0a4pJ_N80nx_eOHb2efV-eXnzZnp-crSZtyWNUMlUQ3qFGybbAkLTaqlbo2khgokaG6FJUydcVY2bZISIwxU6YkTd5SYvBJ8XKv27uQ-JytxBEhTc0wpWUmNntCBXHF-2g7EX_zICz_exDilos4WOk0Nw1DqhRYtKyqlCZCV7JFbfZZsQZDlbXez97GttNK5kCjcAvR5Y23O74NN7xCJD-GZYE3s0AM16NOA-9skrkSuTZhnN5NIWGwqWFGX_2D3h_dTG1FDsB6E7JfOYny0wrRpiasRpla30PloXRnc-21sfl8YfB2YZCZQf8atmJMiW--fvl_9vLHkn19wO60cMMuBTdOfystwWoPyhhSitrcJRlBPnXGbTb41Bl87oxs9uKwQHdGt62A_wCA1QuU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559783662</pqid></control><display><type>article</type><title>Membrane lipid remodelling of Meconopsis racemosa after its introduction into lowlands from an alpine environment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zheng, Guowei ; Tian, Bo ; Li, Weiqi</creator><contributor>Ing-Feng Chang</contributor><creatorcontrib>Zheng, Guowei ; Tian, Bo ; Li, Weiqi ; Ing-Feng Chang</creatorcontrib><description>Membrane lipids, which determine the integrity and fluidity of membranes, are sensitive to environmental changes. The influence of stresses, such as cold and phosphorus deficiency, on lipid metabolism is well established. However, little is known about how plant lipid profiles change in response to environmental changes during introduction, especially when plants are transferred from extreme conditions to moderate ones. Using a lipidomics approach, we profiled the changes in glycerolipid molecules upon the introduction of the alpine ornamental species Meconopsis racemosa from the alpine region of Northwest Yunnan to the lowlands of Kunming, China. We found that the ratios of digalactosyldiacylglycerol/monogalactosyldiacylglycerol (DGDG/MGDG) and phosphatidylcholine/phosphatidylethanolamine (PC/PE) remained unchanged. Introduction of M. racemosa from an alpine environment to a lowland environment results in two major effects. The first is a decline in the level of plastidic lipids, especially galactolipids. The second, which concerns a decrease of the double-bond index (DBI) and could make the membrane more gel-like, is a response to high temperatures. Changes in the lipidome after M. racemosa was introduced to a lowland environment were the reverse of those that occur when plants are exposed to phosphorus deficiency or cold stress.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0106614</identifier><identifier>PMID: 25184635</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Adaptation, Physiological ; Alpine ecosystems ; Alpine environments ; Alpine regions ; Arabidopsis ; Biogeography ; Biology and Life Sciences ; Botany ; China ; Ecosystem ; Environment ; Environmental changes ; Fatty acids ; Fatty Acids - metabolism ; Fluidity ; Galactolipids ; Genomics ; Germplasm ; High temperature ; High temperatures ; Laboratories ; Lecithin ; Lipid metabolism ; Lipids ; Lowlands ; Membrane lipids ; Membrane Lipids - metabolism ; Membranes ; Metabolism ; Papaveraceae - metabolism ; Phosphatidylcholine ; Phosphatidylethanolamine ; Phosphorus ; Physiological aspects ; Physiology ; Plant introductions ; Plant Leaves - metabolism ; Plant sciences ; Stress, Physiological ; Temperature</subject><ispartof>PloS one, 2014-09, Vol.9 (9), p.e106614-e106614</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Zheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Zheng et al 2014 Zheng et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-78125e919dcb93c5b3fdbce7fc5f0c1f6e2a4df74882bb1ac3338df2592bb65f3</citedby><cites>FETCH-LOGICAL-c692t-78125e919dcb93c5b3fdbce7fc5f0c1f6e2a4df74882bb1ac3338df2592bb65f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153668/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153668/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25184635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ing-Feng Chang</contributor><creatorcontrib>Zheng, Guowei</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>Li, Weiqi</creatorcontrib><title>Membrane lipid remodelling of Meconopsis racemosa after its introduction into lowlands from an alpine environment</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Membrane lipids, which determine the integrity and fluidity of membranes, are sensitive to environmental changes. The influence of stresses, such as cold and phosphorus deficiency, on lipid metabolism is well established. However, little is known about how plant lipid profiles change in response to environmental changes during introduction, especially when plants are transferred from extreme conditions to moderate ones. Using a lipidomics approach, we profiled the changes in glycerolipid molecules upon the introduction of the alpine ornamental species Meconopsis racemosa from the alpine region of Northwest Yunnan to the lowlands of Kunming, China. We found that the ratios of digalactosyldiacylglycerol/monogalactosyldiacylglycerol (DGDG/MGDG) and phosphatidylcholine/phosphatidylethanolamine (PC/PE) remained unchanged. Introduction of M. racemosa from an alpine environment to a lowland environment results in two major effects. The first is a decline in the level of plastidic lipids, especially galactolipids. The second, which concerns a decrease of the double-bond index (DBI) and could make the membrane more gel-like, is a response to high temperatures. Changes in the lipidome after M. racemosa was introduced to a lowland environment were the reverse of those that occur when plants are exposed to phosphorus deficiency or cold stress.</description><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Alpine ecosystems</subject><subject>Alpine environments</subject><subject>Alpine regions</subject><subject>Arabidopsis</subject><subject>Biogeography</subject><subject>Biology and Life Sciences</subject><subject>Botany</subject><subject>China</subject><subject>Ecosystem</subject><subject>Environment</subject><subject>Environmental changes</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fluidity</subject><subject>Galactolipids</subject><subject>Genomics</subject><subject>Germplasm</subject><subject>High temperature</subject><subject>High temperatures</subject><subject>Laboratories</subject><subject>Lecithin</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Lowlands</subject><subject>Membrane lipids</subject><subject>Membrane Lipids - metabolism</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Papaveraceae - metabolism</subject><subject>Phosphatidylcholine</subject><subject>Phosphatidylethanolamine</subject><subject>Phosphorus</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plant introductions</subject><subject>Plant Leaves - metabolism</subject><subject>Plant sciences</subject><subject>Stress, Physiological</subject><subject>Temperature</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBYQkJw2MWOY8e5IFUVj5VaVeJ1tRw_dl05dmonBb49DptWG9QD8sGv3_zHM-MpiucIrhGu0burMEYv3LoPXq8hgpSi6kFxjBpcrmgJ8cOD9VHxJKUrCAlmlD4ujkqCWEUxOS6uL3TXRuE1cLa3CkTdBaWds34LggEXWgYf-mQTiELmuySAMIOOwA4JWD_EoEY52OCnTQAu_HTCqwRMDB0QHgjX2yyu_Y2NwXfaD0-LR0a4pJ_N80nx_eOHb2efV-eXnzZnp-crSZtyWNUMlUQ3qFGybbAkLTaqlbo2khgokaG6FJUydcVY2bZISIwxU6YkTd5SYvBJ8XKv27uQ-JytxBEhTc0wpWUmNntCBXHF-2g7EX_zICz_exDilos4WOk0Nw1DqhRYtKyqlCZCV7JFbfZZsQZDlbXez97GttNK5kCjcAvR5Y23O74NN7xCJD-GZYE3s0AM16NOA-9skrkSuTZhnN5NIWGwqWFGX_2D3h_dTG1FDsB6E7JfOYny0wrRpiasRpla30PloXRnc-21sfl8YfB2YZCZQf8atmJMiW--fvl_9vLHkn19wO60cMMuBTdOfystwWoPyhhSitrcJRlBPnXGbTb41Bl87oxs9uKwQHdGt62A_wCA1QuU</recordid><startdate>20140903</startdate><enddate>20140903</enddate><creator>Zheng, Guowei</creator><creator>Tian, Bo</creator><creator>Li, Weiqi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140903</creationdate><title>Membrane lipid remodelling of Meconopsis racemosa after its introduction into lowlands from an alpine environment</title><author>Zheng, Guowei ; Tian, Bo ; Li, Weiqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-78125e919dcb93c5b3fdbce7fc5f0c1f6e2a4df74882bb1ac3338df2592bb65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Alpine ecosystems</topic><topic>Alpine environments</topic><topic>Alpine regions</topic><topic>Arabidopsis</topic><topic>Biogeography</topic><topic>Biology and Life Sciences</topic><topic>Botany</topic><topic>China</topic><topic>Ecosystem</topic><topic>Environment</topic><topic>Environmental changes</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fluidity</topic><topic>Galactolipids</topic><topic>Genomics</topic><topic>Germplasm</topic><topic>High temperature</topic><topic>High temperatures</topic><topic>Laboratories</topic><topic>Lecithin</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Lowlands</topic><topic>Membrane lipids</topic><topic>Membrane Lipids - metabolism</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Papaveraceae - metabolism</topic><topic>Phosphatidylcholine</topic><topic>Phosphatidylethanolamine</topic><topic>Phosphorus</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plant introductions</topic><topic>Plant Leaves - metabolism</topic><topic>Plant sciences</topic><topic>Stress, Physiological</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Guowei</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>Li, Weiqi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Guowei</au><au>Tian, Bo</au><au>Li, Weiqi</au><au>Ing-Feng Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane lipid remodelling of Meconopsis racemosa after its introduction into lowlands from an alpine environment</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-09-03</date><risdate>2014</risdate><volume>9</volume><issue>9</issue><spage>e106614</spage><epage>e106614</epage><pages>e106614-e106614</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Membrane lipids, which determine the integrity and fluidity of membranes, are sensitive to environmental changes. The influence of stresses, such as cold and phosphorus deficiency, on lipid metabolism is well established. However, little is known about how plant lipid profiles change in response to environmental changes during introduction, especially when plants are transferred from extreme conditions to moderate ones. Using a lipidomics approach, we profiled the changes in glycerolipid molecules upon the introduction of the alpine ornamental species Meconopsis racemosa from the alpine region of Northwest Yunnan to the lowlands of Kunming, China. We found that the ratios of digalactosyldiacylglycerol/monogalactosyldiacylglycerol (DGDG/MGDG) and phosphatidylcholine/phosphatidylethanolamine (PC/PE) remained unchanged. Introduction of M. racemosa from an alpine environment to a lowland environment results in two major effects. The first is a decline in the level of plastidic lipids, especially galactolipids. The second, which concerns a decrease of the double-bond index (DBI) and could make the membrane more gel-like, is a response to high temperatures. Changes in the lipidome after M. racemosa was introduced to a lowland environment were the reverse of those that occur when plants are exposed to phosphorus deficiency or cold stress.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25184635</pmid><doi>10.1371/journal.pone.0106614</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-09, Vol.9 (9), p.e106614-e106614 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1559783662 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adaptation Adaptation, Physiological Alpine ecosystems Alpine environments Alpine regions Arabidopsis Biogeography Biology and Life Sciences Botany China Ecosystem Environment Environmental changes Fatty acids Fatty Acids - metabolism Fluidity Galactolipids Genomics Germplasm High temperature High temperatures Laboratories Lecithin Lipid metabolism Lipids Lowlands Membrane lipids Membrane Lipids - metabolism Membranes Metabolism Papaveraceae - metabolism Phosphatidylcholine Phosphatidylethanolamine Phosphorus Physiological aspects Physiology Plant introductions Plant Leaves - metabolism Plant sciences Stress, Physiological Temperature |
title | Membrane lipid remodelling of Meconopsis racemosa after its introduction into lowlands from an alpine environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20lipid%20remodelling%20of%20Meconopsis%20racemosa%20after%20its%20introduction%20into%20lowlands%20from%20an%20alpine%20environment&rft.jtitle=PloS%20one&rft.au=Zheng,%20Guowei&rft.date=2014-09-03&rft.volume=9&rft.issue=9&rft.spage=e106614&rft.epage=e106614&rft.pages=e106614-e106614&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0106614&rft_dat=%3Cgale_plos_%3EA416975871%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559783662&rft_id=info:pmid/25184635&rft_galeid=A416975871&rft_doaj_id=oai_doaj_org_article_f981d2a3ab844de5ae4cb1b33348930d&rfr_iscdi=true |