Membrane lipid remodelling of Meconopsis racemosa after its introduction into lowlands from an alpine environment

Membrane lipids, which determine the integrity and fluidity of membranes, are sensitive to environmental changes. The influence of stresses, such as cold and phosphorus deficiency, on lipid metabolism is well established. However, little is known about how plant lipid profiles change in response to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-09, Vol.9 (9), p.e106614-e106614
Hauptverfasser: Zheng, Guowei, Tian, Bo, Li, Weiqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Membrane lipids, which determine the integrity and fluidity of membranes, are sensitive to environmental changes. The influence of stresses, such as cold and phosphorus deficiency, on lipid metabolism is well established. However, little is known about how plant lipid profiles change in response to environmental changes during introduction, especially when plants are transferred from extreme conditions to moderate ones. Using a lipidomics approach, we profiled the changes in glycerolipid molecules upon the introduction of the alpine ornamental species Meconopsis racemosa from the alpine region of Northwest Yunnan to the lowlands of Kunming, China. We found that the ratios of digalactosyldiacylglycerol/monogalactosyldiacylglycerol (DGDG/MGDG) and phosphatidylcholine/phosphatidylethanolamine (PC/PE) remained unchanged. Introduction of M. racemosa from an alpine environment to a lowland environment results in two major effects. The first is a decline in the level of plastidic lipids, especially galactolipids. The second, which concerns a decrease of the double-bond index (DBI) and could make the membrane more gel-like, is a response to high temperatures. Changes in the lipidome after M. racemosa was introduced to a lowland environment were the reverse of those that occur when plants are exposed to phosphorus deficiency or cold stress.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0106614