Effect of bile pigments on the compromised gut barrier function in a rat model of bile duct ligation

Studies have shown that the absence of bile in the gut lumen, either by bile duct ligation or bile diversion, induces mucosal injury. However, the mechanism remains elusive. In this study, the role of bile pigments in gut barrier function was investigated in a rat model of bile duct ligation. Male S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-06, Vol.9 (6), p.e98905-e98905
Hauptverfasser: Zhou, Kangkang, Jiang, Mingshan, Liu, Yuanli, Qu, Yilin, Shi, Guojing, Yang, Xinguang, Qin, Xiaofa, Wang, Xiuhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies have shown that the absence of bile in the gut lumen, either by bile duct ligation or bile diversion, induces mucosal injury. However, the mechanism remains elusive. In this study, the role of bile pigments in gut barrier function was investigated in a rat model of bile duct ligation. Male Sprague Dawley (SD) rats were used in this study. After ligation of bile duct, the animals were administrated with free bilirubin, bilirubin ditaurate, or biliverdin by intragastric gavage. 1, 2, or 3 days later, the animals were sacrificed and the damage of mucosa was assessed by histological staining as well as biochemical parameters such as changes of diamine oxidase (DAO) and D-lactate (D-Lac) in the blood. Trypsin and chymotrypsin of the gut were also measured to determine how these digestive proteases may relate to the observed effects of bile pigments. Bile duct ligation (BDL) caused significant increases in gut trypsin and chymotrypsin along with damage of the mucosa as demonstrated by the histological findings under microscope, the reduced expression of tight junction molecules like occludin, and significant changes in DAO and D-lac in the blood. Free bilirubin but not bilirubin ditaurate or biliverdin showed significant inhibitions on trypsin and chymotrypsin as well as alleviated changes of histological and biochemical parameters related to gut barrier disruption. Bile may protect the gut from damage through inhibiting digestive proteases like trypsin and chymotrypsin by free bilirubin.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0098905