Identification of verrucarin a as a potent and selective steroid receptor coactivator-3 small molecule inhibitor
Members of the steroid receptor coactivator (SRC) family are overexpressed in numerous types of cancers. In particular, steroid receptor coactivator 3 (SRC-3) has been recognized as a critical coactivator associated with tumor initiation, progression, recurrence, metastasis, and chemoresistance wher...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-04, Vol.9 (4), p.e95243 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Members of the steroid receptor coactivator (SRC) family are overexpressed in numerous types of cancers. In particular, steroid receptor coactivator 3 (SRC-3) has been recognized as a critical coactivator associated with tumor initiation, progression, recurrence, metastasis, and chemoresistance where it interacts with multiple nuclear receptors and other transcription factors to enhance their transcriptional activities and facilitate cross-talk between pathways that stimulate cancer progression. Because of its central role as an integrator of growth signaling pathways, development of small molecule inhibitors (SMIs) against SRCs have the potential to simultaneously disrupt multiple signal transduction networks and transcription factors involved in tumor progression. Here, high-throughput screening was performed to identify compounds able to inhibit the intrinsic transcriptional activities of the three members of the SRC family. Verrucarin A was identified as a SMI that can selectively promote the degradation of the SRC-3 protein, while affecting SRC-1 and SRC-2 to a lesser extent and having no impact on CARM-1 and p300 protein levels. Verrucarin A was cytotoxic toward multiple types of cancer cells at low nanomolar concentrations, but not toward normal liver cells. Moreover, verrucarin A was able to inhibit expression of the SRC-3 target genes MMP2 and MMP13 and attenuated cancer cell migration. We found that verrucarin A effectively sensitized cancer cells to treatment with other anti-cancer drugs. Binding studies revealed that verrucarin A does not bind directly to SRC-3, suggesting that it inhibits SRC-3 through its interaction with an upstream effector. In conclusion, unlike other SRC SMIs characterized by our laboratory that directly bind to SRCs, verrucarin A is a potent and selective SMI that blocks SRC-3 function through an indirect mechanism. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0095243 |