The pro-proliferative effects of nicotine and its underlying mechanism on rat airway smooth muscle cells

Recent studies have shown that nicotine, a major component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. Cigarette smoking can promote a variety of pulmonary and cardiovascular diseases, such as chronic obstructive pulmonary disease (COPD), atherosclerosis, and cancer. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-04, Vol.9 (4), p.e93508-e93508
Hauptverfasser: He, Fang, Li, Bing, Zhao, Zhuxiang, Zhou, Yumin, Hu, Guoping, Zou, Weifeng, Hong, Wei, Zou, Yimin, Jiang, Changbin, Zhao, Dongxing, Ran, Pixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies have shown that nicotine, a major component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. Cigarette smoking can promote a variety of pulmonary and cardiovascular diseases, such as chronic obstructive pulmonary disease (COPD), atherosclerosis, and cancer. A predominant feature of COPD is airway remodeling, which includes increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodeling in COPD have not yet been fully elucidated. Here, we show that nicotine induces a profound and time-dependent increase in DNA synthesis in rat airway smooth muscle cells (RASMCs) in vitro. Nicotine also significantly increased the number of RASMCs, which was associated with the increased expression of Cyclin D1, phosphorylation of the retinoblastoma protein (RB) and was dependent on the activation of Akt. The activation of Akt by nicotine occurred within minutes and depended upon the nicotinic acetylcholine receptors (nAchRs). Activated Akt increased the phosphorylation of downstream substrates such as GSK3β. Our data suggest that the binding of nicotine to the nAchRs on RASMCs can regulate cellular proliferation by activating the Akt pathway.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0093508