Unmyelinated white matter loss in the preterm brain is associated with early increased levels of end-tidal carbon monoxide

Increased levels of end-tidal carbon monoxide (ETCOc) in preterm infants during the first day of life are associated with oxidative stress, inflammatory processes and adverse neurodevelopmental outcome at 2 years of age. Therefore, we hypothesized that early ETCOc levels may also be associated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-03, Vol.9 (3), p.e89061
Hauptverfasser: Blok, Cornelie A, Kersbergen, Karina J, van der Aa, Niek E, van Kooij, Britt J, Anbeek, Petronella, Isgum, Ivana, de Vries, Linda S, Krediet, Tannette G, Groenendaal, Floris, Vreman, Hendrik J, van Bel, Frank, Benders, Manon J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased levels of end-tidal carbon monoxide (ETCOc) in preterm infants during the first day of life are associated with oxidative stress, inflammatory processes and adverse neurodevelopmental outcome at 2 years of age. Therefore, we hypothesized that early ETCOc levels may also be associated with impaired growth of unmyelinated cerebral white matter. From a cohort of 156 extremely and very preterm infants in which ETCOc was determined within 24 h after birth, in 36 infants 3D-MRI was performed at term-equivalent age to assess cerebral tissue volumes of important brain regions. Linear regression analysis between cerebral ventricular volume, unmyelinated white matter/total brain volume-, and cortical grey matter/total brain volume-ratio and ETCOc showed a positive, negative and positive correlation, respectively. Multivariable analyses showed that solely ETCOc was positively related to cerebral ventricular volume and cortical grey matter/total brain volume ratio, and that solely ETCOc was inversely related to the unmyelinated white matter/total brain volume ratio, suggesting that increased levels of ETCOc, associated with oxidative stress and inflammation, were related with impaired growth of unmyelinated white matter. Increased values of ETCOc, measured within the first 24 hours of life may be indicative of oxidative stress and inflammation in the immediate perinatal period, resulting in impaired growth of the vulnerable unmyelinated white matter of the preterm brain.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0089061