Sequence complexity of amyloidogenic regions in intrinsically disordered human proteins

An amyloidogenic region (AR) in a protein sequence plays a significant role in protein aggregation and amyloid formation. We have investigated the sequence complexity of AR that is present in intrinsically disordered human proteins. More than 80% human proteins in the disordered protein databases (D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-03, Vol.9 (3), p.e89781-e89781
Hauptverfasser: Das, Swagata, Pal, Uttam, Das, Supriya, Bagga, Khyati, Roy, Anupam, Mrigwani, Arpita, Maiti, Nakul C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An amyloidogenic region (AR) in a protein sequence plays a significant role in protein aggregation and amyloid formation. We have investigated the sequence complexity of AR that is present in intrinsically disordered human proteins. More than 80% human proteins in the disordered protein databases (DisProt+IDEAL) contained one or more ARs. With decrease of protein disorder, AR content in the protein sequence was decreased. A probability density distribution analysis and discrete analysis of AR sequences showed that ∼8% residue in a protein sequence was in AR and the region was in average 8 residues long. The residues in the AR were high in sequence complexity and it seldom overlapped with low complexity regions (LCR), which was largely abundant in disorder proteins. The sequences in the AR showed mixed conformational adaptability towards α-helix, β-sheet/strand and coil conformations.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0089781