Suppressive effects of irbesartan on inflammation and apoptosis in atherosclerotic plaques of apoE-/- mice: molecular imaging with 14C-FDG and 99mTc-annexin A5

To investigate the effects of irbesartan on inflammation and apoptosis in atherosclerotic plaques by histochemical examination and molecular imaging using (14)C-FDG and (99m)Tc-annexin A5. Irbesartan has a peroxisome proliferator-activated receptor gamma (PPARγ) activation property in addition to it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014, Vol.9 (2), p.e89338-e89338
Hauptverfasser: Zhao, Yan, Watanabe, Ayahisa, Zhao, Songji, Kobayashi, Tatsuo, Fukao, Keita, Tanaka, Yoshikazu, Nakano, Toru, Yoshida, Tetsuya, Takemoto, Hiroshi, Tamaki, Nagara, Kuge, Yuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the effects of irbesartan on inflammation and apoptosis in atherosclerotic plaques by histochemical examination and molecular imaging using (14)C-FDG and (99m)Tc-annexin A5. Irbesartan has a peroxisome proliferator-activated receptor gamma (PPARγ) activation property in addition to its ability to block the AT1 receptor. Accordingly, irbesartan may exert further anti-inflammatory and anti-apoptotic effects in atherosclerotic plaques. However, such effects of irbesartan have not been fully investigated. Molecular imaging using (18)F-FDG and (99m)Tc-annexin A5 is useful for evaluating inflammation and apoptosis in atherosclerotic plaques. Female apoE(-/-) mice were treated with irbesartan-mixed (50 mg/kg/day) or irbesartan-free (control) diet for 12 weeks (n = 11/group). One week after the treatment, the mice were co-injected with (14)C-FDG and (99m)Tc-annexin A5, and cryostat sections of the aortic root were prepared. Histochemical examination with Movat's pentachrome (plaque size), Oil Red O (lipid deposition), Mac-2 (macrophage infiltration), and TUNEL (apoptosis) stainings were performed. Dual-tracer autoradiography was carried out to evaluate the levels of (14)C-FDG and (99m)Tc-annexin A5 in plaques (%ID×kg). In vitro experiments were performed to investigate the mechanism underlying the effects. Histological examination indicated that irbesartan treatment significantly reduced plaque size (to 56.4%±11.1% of control), intra-plaque lipid deposition (53.6%±20.2%) and macrophage infiltration (61.9%±20.8%) levels, and the number of apoptotic cells (14.5%±16.6%). (14)C-FDG (43.0%±18.6%) and (99m)Tc-annexin A5 levels (45.9%±16.8%) were also significantly reduced by irbesartan treatment. Irbesartan significantly suppressed MCP-1 mRNA expression in TNF-α stimulated THP-1 monocytes (64.8%±8.4% of un-treated cells). PPARγ activation was observed in cells treated with irbesartan (134%±36% at 3 µM to 3329%±218% at 81 µM) by a PPARγ reporter assay system. Remissions of inflammation and apoptosis as potential therapeutic effects of irbesartan on atherosclerosis were observed. The usefulness of molecular imaging using (18)F-FDG and (99m)Tc-annexin A5 for evaluating the therapeutic effects of irbesartan on atherosclerosis was also suggested.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0089338