Morphology of influenza B/Lee/40 determined by cryo-electron microscopy

Cryo-electron microscopy projection image analysis and tomography is used to describe the overall architecture of influenza B/Lee/40. Algebraic reconstruction techniques with utilization of volume elements (blobs) are employed to reconstruct tomograms of this pleomorphic virus and distinguish viral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-02, Vol.9 (2), p.e88288-e88288
Hauptverfasser: Katz, Garrett, Benkarroum, Younes, Wei, Hui, Rice, William J, Bucher, Doris, Alimova, Alexandra, Katz, Al, Klukowska, Joanna, Herman, Gabor T, Gottlieb, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cryo-electron microscopy projection image analysis and tomography is used to describe the overall architecture of influenza B/Lee/40. Algebraic reconstruction techniques with utilization of volume elements (blobs) are employed to reconstruct tomograms of this pleomorphic virus and distinguish viral surface spikes. The purpose of this research is to examine the architecture of influenza type B virions by cryo-electron tomography and projection image analysis. The aims are to explore the degree of ribonucleoprotein disorder in irregular shaped virions; and to quantify the number and distribution of glycoprotein surface spikes (hemagglutinin and neuraminidase) on influenza B. Projection image analysis of virion morphology shows that the majority (∼83%) of virions are spherical with an average diameter of 134±19 nm. The aspherical virions are larger (average diameter = 155±47 nm), exhibit disruption of the ribonucleoproteins, and show a partial loss of surface protein spikes. A count of glycoprotein spikes indicates that a typical 130 nm diameter type B virion contains ∼460 surface spikes. Configuration of the ribonucleoproteins and surface glycoprotein spikes are visualized in tomogram reconstructions and EM densities visualize extensions of the spikes into the matrix. The importance of the viral matrix in organization of virus structure through interaction with the ribonucleoproteins and the anchoring of the glycoprotein spikes to the matrix is demonstrated.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0088288